Advances in quantum information processing compel us to explore learning from quantum data. We consider a classical-quantum learning problem in which the samples are quantum states with classical labels and the predictors are quantum measurements. To study this problem, we introduce a quantum counterpart of PAC framework. We argue that the major difficulties arising from the quantum nature of the problem are the compatibility of the measurements and the no-cloning principle. With that in mind, we establish bounds on the quantum sample complexity for a family of quantum concept classes called concentrated measurements. Using a quantum Fourier expansion on qubits, we propose a quantum low-degree learning algorithm which is a quantum counterpart of (Linial et al., 1993).
翻译:量子信息处理的进步迫使我们探索从量子数据中学习。 我们考虑一个古典- 量子学习问题, 样本是量子状态,有古典标签,预测值是量子测量。 为了研究这一问题,我们引入了PAC框架的量子对应器。 我们争论说,问题量子性质的主要困难在于测量的兼容性和无克隆原则。 考虑到这一点, 我们为量子概念类别中称为集中测量的一组量子样本复杂性设定了界限。 我们用量子上的量子Fourier扩展, 我们建议了量子低度学习算法,这是量子对应法(Linial等人,1993年)。