The approximate latent-space approach to the projective part of the projection predictive variable selection implemented in the projpred R package recently added support for more response families, including ordinal ones relying on a single latent predictor per observation. Here, we present an exact projection approach for all discrete finite-support response families, called the augmented-data projection. A simulation study shows that the two projection approaches usually behave similarly, but the augmented-data projection tends to perform better. The cost of the slightly better performance of the augmented-data projection is a substantial increase in runtime. Thus, we recommend to use the latent projection in the early phase of a model-building workflow and to use the augmented-data projection for final results. Not illustrated here is that the augmented-data projection adds support for nominal response families which are not supported by the latent projection.
翻译:对预测预测R包中执行的预测预测变量选择的预测部分,最近增加了对更多响应型家庭的支持,包括依靠单一潜在预测器观测的正方形家庭。在这里,我们为所有离散的有限支持响应型家庭提供了精确的预测法,称为“扩大数据预测”。模拟研究表明,两种预测型方法通常表现相似,但扩大数据预测效果往往更好。扩大数据预测效果稍好的成本是运行时间的大幅提高。因此,我们建议在建模工作流程的早期阶段使用潜在预测,并将扩大数据预测用于最终结果。此处没有说明的是,扩大数据预测增加了对名义响应型家庭的支持,而名义响应型家庭没有得到潜在预测的支持。