In recent years, empirical Bayesian (EB) inference has become an attractive approach for estimation in parametric models arising in a variety of real-life problems, especially in complex and high-dimensional scientific applications. However, compared to the relative abundance of available general methods for computing point estimators in the EB framework, the construction of confidence sets and hypothesis tests with good theoretical properties remains difficult and problem specific. Motivated by the universal inference framework of Wasserman et al. (2020), we propose a general and universal method, based on holdout likelihood ratios, and utilizing the hierarchical structure of the specified Bayesian model for constructing confidence sets and hypothesis tests that are finite sample valid. We illustrate our method through a range of numerical studies and real data applications, which demonstrate that the approach is able to generate useful and meaningful inferential statements in the relevant contexts.
翻译:近年来,贝叶西亚(EB)经验推论已成为一种具有吸引力的方法,用于估算在各种实际生活问题中产生的参数模型,特别是在复杂和高维的科学应用中,然而,与在EB框架中现有计算点估计器的一般方法相对丰富相比,建立具有良好理论属性的置信套和假设测试仍很困难,问题特别具体。在Wasserman等人(202020年)普遍推论框架的推动下,我们提出了一个基于坚持概率比率的通用通用方法,并利用特定Bayesian模型的等级结构来构建具有有限抽样效力的信任数据集和假设测试。我们通过一系列数字研究和实际数据应用来说明我们的方法,这些研究和应用表明该方法能够在相关情况下产生有用和有意义的推断性陈述。</s>