Deep Neural Networks (DNN) are nowadays largely adopted in many application domains thanks to their human-like, or even superhuman, performance in specific tasks. However, due to unpredictable/unconsidered operating conditions, unexpected failures show up on field, making the performance of a DNN in operation very different from the one estimated prior to release. In the life cycle of DNN systems, the assessment of accuracy is typically addressed in two ways: offline, via sampling of operational inputs, or online, via pseudo-oracles. The former is considered more expensive due to the need for manual labeling of the sampled inputs. The latter is automatic but less accurate. We believe that emerging iterative industrial-strength life cycle models for Machine Learning systems, like MLOps, offer the possibility to leverage inputs observed in operation not only to provide faithful estimates of a DNN accuracy, but also to improve it through remodeling/retraining actions. We propose DAIC (DNN Assessment and Improvement Cycle), an approach which combines ''low-cost'' online pseudo-oracles and ''high-cost'' offline sampling techniques to estimate and improve the operational accuracy of a DNN in the iterations of its life cycle. Preliminary results show the benefits of combining the two approaches and integrating them in the DNN life cycle.


翻译:深神经网络(DNN)目前主要用于许多应用领域,因为其人性化,甚至超人性,在具体任务方面表现良好。然而,由于不可预测/未考虑的操作条件,外地出现出乎意料的故障,使DNN在运行中的性能与释放前估计的性能大不相同。在DNN系统的生命周期中,对准确性的评估通常以两种方式进行:通过对操作投入进行取样,或通过假眼镜进行在线评估。前者被认为更昂贵,因为需要对抽样投入进行人工标签。后者是自动的,但不太准确。我们认为,正在出现的机器学习系统的迭代工业强度生命周期模型,如MLOPs, 提供了利用在运行中观察到的投入的可能性,不仅能够提供对DNN的准确性准确性的忠实估计,而且还可以通过重新建模/再培训行动来改进。我们建议DAIC(DNNE(DN评估和改进周期)将“低成本”在线假眼镜和“高成本”的离线取样技术结合起来,从而将DNNNN的寿命周期的准确性结果整合到初步周期。</s>

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
116+阅读 · 2022年4月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员