As a crucial infrastructure of intelligent mobile robots, LiDAR-Inertial odometry (LIO) provides the basic capability of state estimation by tracking LiDAR scans. The high-accuracy tracking generally involves the kNN search, which is used with minimizing point-to-plane distance. The cost for this, however, is maintaining a large local map and performing kNN plane fit for each point. In this work, we reduce both time and space complexity of LIO by saving these unnecessary costs. Technically, we design a plane pre-fitting (PPF) pipeline to track the basic skeleton of the 3D scene. In PPF, planes are not fitted individually for each scan, much less for each point, but are updated incrementally as the agent moves. Unlike kNN, the PPF is more robust to noisy and non-strict planes with our iterative Principal Component Analyse (iPCA) refinement. Moreover, a simple yet effective sandwich layer is introduced to eliminate false point-to-plane matches. Our method was extensively tested on a total number of 22 sequences across 5 open datasets, and evaluated in 3 existing state-of-the-art LIO systems. By contrast, our PPF downsizes the local map by at most 64%, achieving up to 3x faster in residual calculating, 1.92x overall FPS, and still keeps the same level of accuracy. We fully open source our implementation at https://github.com/xingyuuchen/LIO-PPF.


翻译:作为智能移动机器人的关键基础设施,LIDAR-Intertial odology(LIO)通过跟踪 LiDAR 扫描为国家估算提供基本能力。 高精确度跟踪一般涉及 kNN 搜索, 使用时将点对平面距离最小化。 但是, 这样做的成本是维护大局地图, 并运行适合每个点的 kNN 平面。 在这项工作中, 我们通过节省这些不必要的费用, 减少了LIO的时间和空间复杂性。 从技术上讲, 我们设计了一个飞机预装(PPPF) 管道, 以跟踪3D 场的基本骨架。 在 PPFP 中, 飞机不是单个安装每个点的扫描, 大大少于每个点, 而是随着代理器的移动而不断更新。 与 kNNNN不同的是, PPFPF 相比, 用我们反复的主组件分析(iPP) 引入一个简单有效的三明治层, 来消除错误的点对平面对平面匹配。 我们的方法在5个开放数据集的总共22个序列上进行了广泛的测试,, 由现有的PPFFIPFS 3 速度进行最快速的比较。</s>

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员