As a crucial infrastructure of intelligent mobile robots, LiDAR-Inertial odometry (LIO) provides the basic capability of state estimation by tracking LiDAR scans. The high-accuracy tracking generally involves the kNN search, which is used with minimizing point-to-plane distance. The cost for this, however, is maintaining a large local map and performing kNN plane fit for each point. In this work, we reduce both time and space complexity of LIO by saving these unnecessary costs. Technically, we design a plane pre-fitting (PPF) pipeline to track the basic skeleton of the 3D scene. In PPF, planes are not fitted individually for each scan, much less for each point, but are updated incrementally as the agent moves. Unlike kNN, the PPF is more robust to noisy and non-strict planes with our iterative Principal Component Analyse (iPCA) refinement. Moreover, a simple yet effective sandwich layer is introduced to eliminate false point-to-plane matches. Our method was extensively tested on a total number of 22 sequences across 5 open datasets, and evaluated in 3 existing state-of-the-art LIO systems. By contrast, our PPF downsizes the local map by at most 64%, achieving up to 3x faster in residual calculating, 1.92x overall FPS, and still keeps the same level of accuracy. We fully open source our implementation at https://github.com/xingyuuchen/LIO-PPF.
翻译:作为智能移动机器人的关键基础设施,LIDAR-Intertial odology(LIO)通过跟踪 LiDAR 扫描为国家估算提供基本能力。 高精确度跟踪一般涉及 kNN 搜索, 使用时将点对平面距离最小化。 但是, 这样做的成本是维护大局地图, 并运行适合每个点的 kNN 平面。 在这项工作中, 我们通过节省这些不必要的费用, 减少了LIO的时间和空间复杂性。 从技术上讲, 我们设计了一个飞机预装(PPPF) 管道, 以跟踪3D 场的基本骨架。 在 PPFP 中, 飞机不是单个安装每个点的扫描, 大大少于每个点, 而是随着代理器的移动而不断更新。 与 kNNNN不同的是, PPFPF 相比, 用我们反复的主组件分析(iPP) 引入一个简单有效的三明治层, 来消除错误的点对平面对平面匹配。 我们的方法在5个开放数据集的总共22个序列上进行了广泛的测试,, 由现有的PPFFIPFS 3 速度进行最快速的比较。</s>