With the recent advance of deep learning, neural networks have been extensively used for data in non-Euclidean domains. In particular, hyperbolic neural networks have proved successful in processing hierarchical information of data. While a variety of hyperbolic neural network structures have been proposed, they mainly focus on discriminative tasks, and generative models in the hyperbolic space have scarcely been studied. In this work, we propose a hyperbolic generative adversarial network (GAN) within the Lorentz model for generating hyperbolic data. In addition to existing hyperbolic operations, we design novel hyperbolic layers to guarantee stable training. We first use synthetic data to show that our network is able to learn simple distribution in the hyperbolic space. Moreover, by virtue of an autoencoder, we construct a neural network model, named HAEGAN, for generating more complex data in the hyperbolic space. HAEGAN contains three parts: first, a hyperbolic autoencoder; second, a hyperbolic GAN for generating the latent embedding of the autoencoder; third, a generator that inherits the decoder from autoencoder and the generator from the GAN. Experiments show that HAEGAN is able to generate complex data with state-of-the-art structure-related performance.
翻译:随着最近深层次学习的推进,神经网络被广泛用于非欧元域的数据。特别是,双曲神经网络在处理数据等级信息方面证明是成功的。虽然提出了各种超双曲神经网络结构,但它们主要侧重于歧视任务,而双曲空间的基因模型很少研究。在这项工作中,我们建议在Lorentz模型中建立一个双曲基因对抗网络(GAN),用于生成双曲数据。除了现有的双曲操作外,我们还设计了新的双曲层,以保证稳定的培训。我们首先使用合成数据来显示我们的网络能够学习超双曲神经网络在双曲空间的简单分布。此外,借助一个自动编码器,我们建造了一个名为HAEGANAN的神经网络模型,用于在超曲空间生成更复杂的数据。HAEGAN包含三个部分:第一,一个超双曲自动编码;第二,一个超双曲GAN,用于从自动coder生成潜在嵌入自动计算机的嵌入;第三,一个能从GAGAN结构继承GAADER的发动机模型,从GAADA模型到从GADADER的自动自动自动自动自动显示。