Imbalanced classification on graphs is ubiquitous yet challenging in many real-world applications, such as fraudulent node detection. Recently, graph neural networks (GNNs) have shown promising performance on many network analysis tasks. However, most existing GNNs have almost exclusively focused on the balanced networks, and would get unappealing performance on the imbalanced networks. To bridge this gap, in this paper, we present a generative adversarial graph network model, called ImGAGN to address the imbalanced classification problem on graphs. It introduces a novel generator for graph structure data, named GraphGenerator, which can simulate both the minority class nodes' attribute distribution and network topological structure distribution by generating a set of synthetic minority nodes such that the number of nodes in different classes can be balanced. Then a graph convolutional network (GCN) discriminator is trained to discriminate between real nodes and fake (i.e., generated) nodes, and also between minority nodes and majority nodes on the synthetic balanced network. To validate the effectiveness of the proposed method, extensive experiments are conducted on four real-world imbalanced network datasets. Experimental results demonstrate that the proposed method ImGAGN outperforms state-of-the-art algorithms for semi-supervised imbalanced node classification task.


翻译:图表上的平衡分类普遍存在,但在许多真实世界的应用中,如欺诈性节点探测等,却具有挑战性。最近,图表神经网络(GNNS)在许多网络分析任务中表现出了令人乐观的绩效。然而,大多数现有的GNNS几乎完全集中在平衡的网络上,并且将在不平衡的网络上取得不具有吸引力的性能。为了缩小这一差距,我们在本文件中提出了一个基因化的对抗性图表网络模型,称为IMGGGGN,以解决图形中不平衡的分类问题。它为图形结构数据引入了一个新型的生成器,名为GapGenerator,它可以通过生成一系列合成的少数群体节点节点分布和网络表层结构分布来模拟少数类节点属性分布和网络表层结构分布。然后,一个图形革命性网络(GCN)歧视者被训练区分真实的节点和假的(即生成的)节点,以及合成平衡网络上的少数群体节点和多数节点。为了验证拟议方法的有效性,在四个真实世界级节点之间进行了广泛的实验,在四个现实-全球失衡网络的分类方法上展示了拟议的不代表的分类结果。 实验。

14
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2018年5月21日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员