To reduce annotation labor associated with object detection, an increasing number of studies focus on transferring the learned knowledge from a labeled source domain to another unlabeled target domain. However, existing methods assume that the labeled data are sampled from a single source domain, which ignores a more generalized scenario, where labeled data are from multiple source domains. For the more challenging task, we propose a unified Faster R-CNN based framework, termed Divide-and-Merge Spindle Network (DMSN), which can simultaneously enhance domain invariance and preserve discriminative power. Specifically, the framework contains multiple source subnets and a pseudo target subnet. First, we propose a hierarchical feature alignment strategy to conduct strong and weak alignments for low- and high-level features, respectively, considering their different effects for object detection. Second, we develop a novel pseudo subnet learning algorithm to approximate optimal parameters of pseudo target subset by weighted combination of parameters in different source subnets. Finally, a consistency regularization for region proposal network is proposed to facilitate each subnet to learn more abstract invariances. Extensive experiments on different adaptation scenarios demonstrate the effectiveness of the proposed model.


翻译:为了减少与物体探测有关的批注劳动,越来越多的研究侧重于将从标签源域获得的知识从标签源域转移到另一个未标签目标域。然而,现有方法假定标签数据是从单一源域抽样的,这忽略了一个比较普遍的设想,即标签数据来自多个源域。关于更具有挑战性的任务,我们提议了一个统一的快速R-CNN框架,称为差异和中位斯宾德尔网络(DMSN),这个框架可以同时增强域域差异并保护歧视力量。具体地说,该框架包含多个源子网和一个假目标子网。首先,我们提出一个等级特征调整战略,对低位和高位特性分别进行强弱的校准,同时考虑到其对物体探测的不同效果。第二,我们开发了一个新型的伪子网学习算法,通过不同源子网参数的加权组合,来估计假目标的最佳参数。最后,建议区域建议网络的一致性规范,以便利每个子网学习更抽象的变量。关于不同适应模型的大规模实验显示了拟议模型的有效性。

0
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
28+阅读 · 2020年12月15日
专知会员服务
42+阅读 · 2020年12月1日
近期必读的12篇KDD 2019【图神经网络(GNN)】相关论文
专知会员服务
63+阅读 · 2020年1月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Few-shot Adaptive Faster R-CNN
Arxiv
3+阅读 · 2019年3月22日
Arxiv
7+阅读 · 2018年12月5日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
Top
微信扫码咨询专知VIP会员