Few-shot object detection is an emerging problem aimed at detecting novel concepts from few exemplars. Existing approaches to few-shot detection assume abundant base labels to adapt to novel objects. This paper explores the task of semi-supervised few-shot detection by considering a realistic scenario which lacks abundant labels for both base and novel objects. Motivated by this unique problem, we introduce SoftER Teacher, a robust detector combining the advantages of pseudo-labeling with representation learning on region proposals. SoftER Teacher harnesses unlabeled data to jointly optimize for semi-supervised few-shot detection without explicitly relying on abundant base labels. Extensive experiments show that SoftER Teacher matches the novel class performance of a strong supervised detector using only 10% of base labels. Our work also sheds insight into a previously unknown relationship between semi-supervised and few-shot detection to suggest that a stronger semi-supervised detector leads to a more label-efficient few-shot detector. Code and models are available at https://github.com/lexisnexis-risk-open-source/ledetection
翻译:微小的天体探测是一个新出现的问题,目的是从少数样板中探测新概念。 微小的探测现有方法假定有大量基本标签,以适应新对象。 本文探讨半监督的微小的探测任务,方法是考虑一种现实的情景,即基础和小的物体缺乏大量标签。 受这个独特问题的驱使,我们引进了软体教师,这是一个强大的探测器,将假标签的优点与区域提案的代表学习结合起来。 SoftER 教师利用无标签的数据,联合优化半监督的微小的探测,而不明确依赖丰富的基本标签。 广泛的实验显示, SoftER 教师与只使用10%基本标签的强力受监督的探测器的新颖的阶级表现相匹配。 我们的工作还揭示了以前未知的半监督和微小的探测之间的关系,以表明一个更强大的半监督的探测器导致一个更有标签效率的少发探测器。 可在 https://github.com/lexisxis-ris-ris-ris-oprofroleke-lectionection</s>