We present a polynomial-time algorithm for robustly learning an unknown affine transformation of the standard hypercube from samples, an important and well-studied setting for independent component analysis (ICA). Specifically, given an $\epsilon$-corrupted sample from a distribution $D$ obtained by applying an unknown affine transformation $x \rightarrow Ax+s$ to the uniform distribution on a $d$-dimensional hypercube $[-1,1]^d$, our algorithm constructs $\hat{A}, \hat{s}$ such that the total variation distance of the distribution $\hat{D}$ from $D$ is $O(\epsilon)$ using poly$(d)$ time and samples. Total variation distance is the information-theoretically strongest possible notion of distance in our setting and our recovery guarantees in this distance are optimal up to the absolute constant factor multiplying $\epsilon$. In particular, if the columns of $A$ are normalized to be unit length, our total variation distance guarantee implies a bound on the sum of the $\ell_2$ distances between the column vectors of $A$ and $A'$, $\sum_{i =1}^d \|a_i-\hat{a}_i\|_2 = O(\epsilon)$. In contrast, the strongest known prior results only yield a $\epsilon^{O(1)}$ (relative) bound on the distance between individual $a_i$'s and their estimates and translate into an $O(d\epsilon)$ bound on the total variation distance. Our key innovation is a new approach to ICA (even to outlier-free ICA) that circumvents the difficulties in the classical method of moments and instead relies on a new geometric certificate of correctness of an affine transformation. Our algorithm is based on a new method that iteratively improves an estimate of the unknown affine transformation whenever the requirements of the certificate are not met.
翻译:我们为强力学习从样本中提取标准超立方体的不为人知的瞬间变异,这是独立元件分析(ICA)的重要和研究良好的设置。具体地说,如果从分配中获得的美元(美元)和美元(美元)的折中变异样本,则使用美元(美元)和美元(美元)的美元(美元)的美元(美元)的折中变异(美元)的混合时间算法,通过对美元(美元)的立方体变异(美元)的绝对常数乘以美元(美元),我们的算法将美元(美元)至美元(美元)的美元(美元)的正值变异差总和美元(美元)的正数(美元)的货币(美元)变异差总和美元(美元)的货币(美元)的正数(美元)的正值(美元)的正数(美元)的正数(美元)的变异差法(美元),在美元(美元之前的正数(美元)的解数(美元)的正数(美元)的正数(美元)的正数(美元)的解数(美元)的货币)的变算法(美元)的直数(美元)的正数(美元)法(美元)的正数(美元)的正数(美元)的正数(美元)的折数(美元)的正数(美元)的正数(美元)的折数(美元)的折数(美元)的折数(美元)的折数(美元)的变法)在O(美元)的折数(美元)中,在美元)的折数(美元)的正值)的折算算算算法(美元)的直数(美元=(美元=(美元)的直数(美元)的值)的正值)的正值)的折)的直)的折)中,在O(美元)的折数(美元)的折算算算算算算算算算算算算算算算的直数(美元)中,在O(美元)的直)的直)的直数(美元)中,在美元)中,在美元)的值)的直数(美元=(美元=(美元)的直数(美元)的值)的</s>