We present a polynomial-time algorithm for robustly learning an unknown affine transformation of the standard hypercube from samples, an important and well-studied setting for independent component analysis (ICA). Specifically, given an $\epsilon$-corrupted sample from a distribution $D$ obtained by applying an unknown affine transformation $x \rightarrow Ax+s$ to the uniform distribution on a $d$-dimensional hypercube $[-1,1]^d$, our algorithm constructs $\hat{A}, \hat{s}$ such that the total variation distance of the distribution $\hat{D}$ from $D$ is $O(\epsilon)$ using poly$(d)$ time and samples. Total variation distance is the information-theoretically strongest possible notion of distance in our setting and our recovery guarantees in this distance are optimal up to the absolute constant factor multiplying $\epsilon$. In particular, if the columns of $A$ are normalized to be unit length, our total variation distance guarantee implies a bound on the sum of the $\ell_2$ distances between the column vectors of $A$ and $A'$, $\sum_{i =1}^d \|a_i-\hat{a}_i\|_2 = O(\epsilon)$. In contrast, the strongest known prior results only yield a $\epsilon^{O(1)}$ (relative) bound on the distance between individual $a_i$'s and their estimates and translate into an $O(d\epsilon)$ bound on the total variation distance. Our key innovation is a new approach to ICA (even to outlier-free ICA) that circumvents the difficulties in the classical method of moments and instead relies on a new geometric certificate of correctness of an affine transformation. Our algorithm is based on a new method that iteratively improves an estimate of the unknown affine transformation whenever the requirements of the certificate are not met.


翻译:我们为强力学习从样本中提取标准超立方体的不为人知的瞬间变异,这是独立元件分析(ICA)的重要和研究良好的设置。具体地说,如果从分配中获得的美元(美元)和美元(美元)的折中变异样本,则使用美元(美元)和美元(美元)的美元(美元)的美元(美元)的折中变异(美元)的混合时间算法,通过对美元(美元)的立方体变异(美元)的绝对常数乘以美元(美元),我们的算法将美元(美元)至美元(美元)的美元(美元)的正值变异差总和美元(美元)的正数(美元)的货币(美元)变异差总和美元(美元)的货币(美元)的正数(美元)的正值(美元)的正数(美元)的正数(美元)的变异差法(美元),在美元(美元之前的正数(美元)的解数(美元)的正数(美元)的正数(美元)的正数(美元)的解数(美元)的货币)的变算法(美元)的直数(美元)的正数(美元)法(美元)的正数(美元)的正数(美元)的正数(美元)的折数(美元)的正数(美元)的正数(美元)的折数(美元)的折数(美元)的折数(美元)的折数(美元)的变法)在O(美元)的折数(美元)中,在美元)的折数(美元)的正值)的折算算算算法(美元)的直数(美元=(美元=(美元)的直数(美元)的值)的正值)的正值)的折)的直)的折)中,在O(美元)的折数(美元)的折算算算算算算算算算算算算算算算的直数(美元)中,在O(美元)的直)的直)的直数(美元)中,在美元)中,在美元)的值)的直数(美元=(美元=(美元)的直数(美元)的值)的</s>

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
26+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关论文
Arxiv
10+阅读 · 2021年11月3日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
11+阅读 · 2020年12月2日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员