Graph signal processing (GSP) provides a powerful framework for analyzing signals arising in a variety of domains. In many applications of GSP, multiple network structures are available, each of which captures different aspects of the same underlying phenomenon. To integrate these different data sources, graph alignment techniques attempt to find the best correspondence between vertices of two graphs. We consider a generalization of this problem, where there is no natural one-to-one mapping between vertices, but where there is correspondence between the community structures of each graph. Because we seek to learn structure at this higher community level, we refer to this problem as "coarse" graph alignment. To this end, we propose a novel regularized partial least squares method which both incorporates the observed graph structures and imposes sparsity in order to reflect the underlying block community structure. We provide efficient algorithms for our method and demonstrate its effectiveness in simulations.
翻译:图形信号处理( GSP) 为分析不同领域产生的信号提供了一个强大的框架。 在普惠制的许多应用中, 有许多网络结构, 其中每个结构都捕捉同一基本现象的不同方面。 为了整合这些不同的数据源, 图形对齐技术试图在两个图形的顶点之间找到最佳对应之处。 我们考虑对这一问题的概括化, 在两个顶点之间没有天然的一对一绘图, 但是每个图形的社区结构之间有对应之处。 由于我们试图学习这个更高的社区结构, 我们将此问题称为“ 粗糙” 图形对齐。 为此, 我们提出一种新的常规化的最小方块方法, 既包括观测到的图形结构, 也强制要求宽度, 以反映基本区块社区结构。 我们为我们的方法提供了高效的算法, 并在模拟中展示其有效性 。