The performances of GNNs for representation learning on the graph-structured data are generally limited to the issue that existing GNNs rely on one assumption, i.e., the original graph structure is reliable. However, since real-world graphs is inevitably noisy or incomplete, this assumption is often unrealistic. In this paper, we propose a structure learning graph convolutional networks (SLGCNs) to alleviate the issue from two aspects, and the proposed approach is applied to node classification. Specifically, the first is node features, we design a efficient-spectral-clustering with anchors (ESC-ANCH) approach to efficiently aggregate feature representationsfrom all similar nodes, no matter how far away they are. The second is edges, our approach generates a re-connected adjacency matrix according to the similarities between nodes and optimized for the downstream prediction task so as to make up for the shortcomings of original adjacency matrix, considering that the original adjacency matrix usually provides misleading information for aggregation step of GCN in the graphs with low level of homophily. Both the re-connected adjacency matrix and original adjacency matrix are applied to SLGCNs to aggregate feature representations from nearby nodes. Thus, SLGCNs can be applied to graphs with various levels of homophily. Experimental results on a wide range of benchmark datasets illustrate that the proposed SLGCNs outperform the stat-of-the-art GNN counterparts.


翻译:GNNs在图表结构数据上的代表学习性能一般限于现有GNNs依赖一种假设,即原始图表结构可靠。然而,由于真实世界的图表不可避免地杂乱或不完整,这一假设往往不切实际。在本文件中,我们提出一个结构学习图形革命网络(SLGCNs),从两个方面缓解这一问题,并将拟议方法应用于节点分类。具体地说,第一个是节点特征,我们设计一种高效的光谱集成方法,由所有类似节点的锚点(ESC-ANCH)来设计高效的综合特征显示,不管它们有多远。第二个是边缘,我们的方法产生一个与下游预测任务相似和优化的相连接的相近矩阵,以便弥补原始相近矩阵的缺陷。考虑到最初的匹配性矩阵通常为GCN(ES-AN-ANCH)的汇总步骤提供误导性信息,从所有相似的节点(ESC-ANCH)到高效的综合特征表示,不管它们有多远。第二个是边缘,我们的方法产生重新连接的匹配性矩阵,根据节点和最佳预测性G(G)的最初的基数基数基数矩阵,可以用来用于G的G/G/G的原始基底基数。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
13+阅读 · 2019年11月14日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关论文
Arxiv
13+阅读 · 2019年11月14日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
5+阅读 · 2018年4月30日
Top
微信扫码咨询专知VIP会员