题目
张量图卷积网络的多关系和鲁棒学习,Tensor Graph Convolutional Networks for Multi-relational and Robust Learning
关键字
机器视觉,卷积神经网络,鲁棒性,深度学习,人工智能,半监督学习
简介
“数据泛滥”时代引发了人们对基于图的学习方法及其从社会学和生物学到交通运输和通信的广泛应用的新兴趣。在图感知方法的背景下,本论文介绍了一种张量图卷积网络(TGCN),用于从与张量表示的图集合相关的数据中进行可扩展的半监督学习(SSL)。新型TGCN架构的关键方面是通过可学习的权重来动态适应张量图中的不同关系,并考虑基于图的正则化器以促进平滑度并减轻过度参数化。最终目标是设计一种功能强大的学习架构,以实现以下目的: :发现复杂且高度非线性的数据关联,组合(并选择)多种类型的关系,随图的大小优雅地缩放,并对图边缘的扰动保持鲁棒性。所提出的架构不仅适用于节点自然涉及不同关系的应用(例如,在社交网络中捕获家庭,友谊和工作关系的多关系图),还适用于健壮的学习设置(其中图包含一定程度的不确定性),且不同的张量平板对应于标称图的不同版本(实现)。数值测试表明,相对于标准GCN,拟议的体系结构实现了显着改善的性能,可以应对最新的对抗性攻击,并通过蛋白质对蛋白质的交互网络实现了卓越的SSL性能。
作者
Vassilis N. Ioannidis,Student Member, IEEE,Antonio G. Marques,Senior Member, IEEE,Georgios B. Giannakis,Fellow, IEEE