This paper discusses the limitations of machine learning (ML), particularly deep artificial neural networks (ANNs), which are effective at approximating complex functions but often lack transparency and explanatory power. It highlights the `problem of induction' : the philosophical issue that past observations may not necessarily predict future events, a challenge that ML models face when encountering new, unseen data. The paper argues for the importance of not just making predictions but also providing good explanations, a feature that current models often fail to deliver. It suggests that for AI to progress, we must seek models that offer insights and explanations, not just predictions.
翻译:暂无翻译