We consider a new topological feauturization of $d$-dimensional images, obtained by convolving images with various filters before computing persistence. Viewing a convolution filter as a motif within an image, the persistence diagram of the resulting convolution describes the way the motif is distributed throughout that image. This pipeline, which we call convolutional persistence, extends the capacity of topology to observe patterns in image data. Indeed, we prove that (generically speaking) for any two images one can find some filter for which they produce different persistence diagrams, so that the collection of all possible convolutional persistence diagrams for a given image is an injective invariant. This is proven by showing convolutional persistence to be a special case of another topological invariant, the Persistent Homology Transform. Other advantages of convolutional persistence are improved stability and robustness to noise, greater flexibility for data-dependent vectorizations, and reduced computational complexity for convolutions with large stride vectors. Additionally, we have a suite of experiments showing that convolutions greatly improve the predictive power of persistence on a host of classification tasks, even if one uses random filters and vectorizes the resulting diagrams by recording only their total persistences.
翻译:我们认为,在计算耐久性之前,将各种过滤器的图像与各种过滤器的图像混在一起,从而获得了美元维度图像的一个新的表面化图象。在图像中将演化过滤器视为一个动因,由此产生的演化变异的持久性图解描述了图象在整个图像中的分布方式。我们称之为演化持久性的管道,扩大了地形学观察图像数据模式的能力。事实上,我们证明,(general speaking)任何两种图像都能找到某些过滤器,而它们生成了不同的耐久性图,因此,为某一图像收集的所有可能的卷变持久性图都是一个不动的预言。通过显示演化持久性是另一个动变异性图象的特例,即持久性变异性变形法,证明了这一点。 演化持久性的其他好处是增强稳定性和对噪音的稳健性,增强依赖数据的传导性的灵活性,以及降低与大晶度矢量的演进的计算复杂性。此外,我们还有一套实验,表明演进能大大改进对某一图像的预测力的持久性的威力,即使通过随机手段来记录。