We study the robustness of conformal prediction, a powerful tool for uncertainty quantification, to label noise. Our analysis tackles both regression and classification problems, characterizing when and how it is possible to construct uncertainty sets that correctly cover the unobserved noiseless ground truth labels. Through stylized theoretical examples and practical experiments, we argue that naive conformal prediction covers the noiseless ground truth label unless the noise distribution is adversarially designed. This leads us to believe that correcting for label noise is unnecessary except for pathological data distributions or noise sources. In such cases, we can also correct for noise of bounded size in the conformal prediction algorithm in order to ensure correct coverage of the ground truth labels without score or data regularity.
翻译:我们研究了符合性预测的稳健性,这是用于量化不确定性的有力工具,用来标注噪音。我们的分析涉及回归和分类问题,说明何时和如何建立正确覆盖未观察到的无噪音地面真实标签的不确定性组。我们通过典型的理论实例和实际实验,认为天真的符合性预测涵盖了无噪音地面真实标签,除非噪音分布是对抗性设计的。这导致我们认为,除了病理数据分布或噪音源之外,纠正标签噪音是不必要的。 在这样的情况下,我们还可以纠正符合性预测算法中界限大小的噪音,以确保在没有得分或数据规律的情况下正确覆盖地面真实标签。