Finding the nearest neighbor to a hyperplane (or Point-to-Hyperplane Nearest Neighbor Search, simply P2HNNS) is a new and challenging problem with applications in many research domains. While existing state-of-the-art hashing schemes (e.g., NH and FH) are able to achieve sublinear time complexity without the assumption of the data being in a unit hypersphere, they require an asymmetric transformation, which increases the data dimension from $d$ to $\Omega(d^2)$. This leads to considerable overhead for indexing and incurs significant distortion errors. In this paper, we investigate a tree-based approach for solving P2HNNS using the classical Ball-Tree index. Compared to hashing-based methods, tree-based methods usually require roughly linear costs for construction, and they provide different kinds of approximations with excellent flexibility. A simple branch-and-bound algorithm with a novel lower bound is first developed on Ball-Tree for performing P2HNNS. Then, a new tree structure named BC-Tree, which maintains the Ball and Cone structures in the leaf nodes of Ball-Tree, is described together with two effective strategies, i.e., point-level pruning and collaborative inner product computing. BC-Tree inherits both the low construction cost and lightweight property of Ball-Tree while providing a similar or more efficient search. Experimental results over 16 real-world data sets show that Ball-Tree and BC-Tree are around 1.1$\sim$10$\times$ faster than NH and FH, and they can reduce the index size and indexing time by about 1$\sim$3 orders of magnitudes on average. The code is available at \url{https://github.com/HuangQiang/BC-Tree}.


翻译:找到超大平面( 或Point- hyperplane ) 最近的相邻地区( 或P2HNNS ) 是许多研究领域的应用程序中一个新的、具有挑战性的问题。 虽然现有的最先进的散列计划( 如NH 和FH) 能够达到亚线时间复杂性, 而没有假设数据在单位超视镜中, 它们需要不对称的转换, 使数据从 $ 提高到 $\ Omega (d% 2) 。 这导致大量用于指数化的间接费用, 并造成了显著的扭曲。 在本文中, 我们用经典的 Ball- Tre 指数来调查基于树的解决 P2HNNS 的方法。 与基于 hasing 的方法相比, 树基方法通常需要大致的线性成本, 并且它们提供不同种类的近似灵活的近似缩略图。 在 Ball- 10 或 CEBERS 上, 一个小于 B2HNNS 的简单分数和新树结构, 提供了B- T 的低水平, 和 Cal- trueal- deal- deal- deal- deal- deal- sal- sal- sal- sal- 和 pwate the 和两个 Cal- sal- deal- deal- deal- sal- deal- sal- deal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- 和两个 和两个 和 和两个 和两个 Cal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sald- sal- sal 和两个结构。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
11+阅读 · 2022年9月1日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员