Finding the nearest neighbor to a hyperplane (or Point-to-Hyperplane Nearest Neighbor Search, simply P2HNNS) is a new and challenging problem with applications in many research domains. While existing state-of-the-art hashing schemes (e.g., NH and FH) are able to achieve sublinear time complexity without the assumption of the data being in a unit hypersphere, they require an asymmetric transformation, which increases the data dimension from $d$ to $\Omega(d^2)$. This leads to considerable overhead for indexing and incurs significant distortion errors. In this paper, we investigate a tree-based approach for solving P2HNNS using the classical Ball-Tree index. Compared to hashing-based methods, tree-based methods usually require roughly linear costs for construction, and they provide different kinds of approximations with excellent flexibility. A simple branch-and-bound algorithm with a novel lower bound is first developed on Ball-Tree for performing P2HNNS. Then, a new tree structure named BC-Tree, which maintains the Ball and Cone structures in the leaf nodes of Ball-Tree, is described together with two effective strategies, i.e., point-level pruning and collaborative inner product computing. BC-Tree inherits both the low construction cost and lightweight property of Ball-Tree while providing a similar or more efficient search. Experimental results over 16 real-world data sets show that Ball-Tree and BC-Tree are around 1.1$\sim$10$\times$ faster than NH and FH, and they can reduce the index size and indexing time by about 1$\sim$3 orders of magnitudes on average. The code is available at \url{https://github.com/HuangQiang/BC-Tree}.
翻译:找到超大平面( 或Point- hyperplane ) 最近的相邻地区( 或P2HNNS ) 是许多研究领域的应用程序中一个新的、具有挑战性的问题。 虽然现有的最先进的散列计划( 如NH 和FH) 能够达到亚线时间复杂性, 而没有假设数据在单位超视镜中, 它们需要不对称的转换, 使数据从 $ 提高到 $\ Omega (d% 2) 。 这导致大量用于指数化的间接费用, 并造成了显著的扭曲。 在本文中, 我们用经典的 Ball- Tre 指数来调查基于树的解决 P2HNNS 的方法。 与基于 hasing 的方法相比, 树基方法通常需要大致的线性成本, 并且它们提供不同种类的近似灵活的近似缩略图。 在 Ball- 10 或 CEBERS 上, 一个小于 B2HNNS 的简单分数和新树结构, 提供了B- T 的低水平, 和 Cal- trueal- deal- deal- deal- deal- deal- sal- sal- sal- sal- 和 pwate the 和两个 Cal- sal- deal- deal- deal- sal- deal- sal- deal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- 和两个 和两个 和 和两个 和两个 Cal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sald- sal- sal 和两个结构。