An Entanglement Generation Switch (EGS) is a quantum network hub that provides entangled states to a set of connected nodes by enabling them to share a limited number of hub resources. As entanglement requests arrive, they join dedicated queues corresponding to the nodes from which they originate. We propose a load-balancing policy wherein the EGS queries nodes for entanglement requests by randomly sampling d of all available request queues and choosing the longest of these to service. This policy is an instance of the well-known power-of-d-choices paradigm previously introduced for classical systems such as data-centers. In contrast to previous models, however, we place queues at nodes instead of directly at the EGS, which offers some practical advantages. Additionally, we incorporate a tunable back-off mechanism into our load-balancing scheme to reduce the classical communication load in the network. To study the policy, we consider a homogeneous star network topology that has the EGS at its center, and model it as a queueing system with requests that arrive according to a Poisson process and whose service times are exponentially distributed. We provide an asymptotic analysis of the system by deriving a set of differential equations that describe the dynamics of the mean-field limit and provide expressions for the corresponding unique equilibrium state. Consistent with analogous results from randomized load-balancing for classical systems, we observe a significant decrease in the average request processing time when the number of choices d increases from one to two during the sampling process, with diminishing returns for a higher number of choices. We also observe that our mean-field model provides a good approximation to study even moderately-sized systems.
翻译:暂无翻译