3D object detection is a key module for safety-critical robotics applications such as autonomous driving. For these applications, we care most about how the detections affect the ego-agent's behavior and safety (the egocentric perspective). Intuitively, we seek more accurate descriptions of object geometry when it's more likely to interfere with the ego-agent's motion trajectory. However, current detection metrics, based on box Intersection-over-Union (IoU), are object-centric and aren't designed to capture the spatio-temporal relationship between objects and the ego-agent. To address this issue, we propose a new egocentric measure to evaluate 3D object detection, namely Support Distance Error (SDE). Our analysis based on SDE reveals that the egocentric detection quality is bounded by the coarse geometry of the bounding boxes. Given the insight that SDE would benefit from more accurate geometry descriptions, we propose to represent objects as amodal contours, specifically amodal star-shaped polygons, and devise a simple model, StarPoly, to predict such contours. Our experiments on the large-scale Waymo Open Dataset show that SDE better reflects the impact of detection quality on the ego-agent's safety compared to IoU; and the estimated contours from StarPoly consistently improve the egocentric detection quality over recent 3D object detectors.
翻译:3D 对象检测是自动驾驶等安全关键机器人应用的关键模块。 对于这些应用, 我们最关心的是检测如何影响自我代理的行为和安全( 自我中心观点) 。 直观地说, 当物体更有可能干扰自我代理运动轨迹时, 我们寻求更精确的物体几何描述。 然而, 以盒式交错- 交错- 团结( IoU) 为基础的当前检测指标, 以对象为中心, 不是设计来捕捉天体和自我代理之间的时空关系。 为了解决这个问题, 我们提议了一种新的以自我为中心的措施来评价3D天体检测( 支持距离错误( SDE) 。 我们基于 SDE 进行的分析显示, 自我中心检测质量受约束箱的粗度几何几何几度测量的束缚。 鉴于SDE将受益于更精确的几何描述, 我们提议将物体作为调式的轮廓, 特别是以恒星- 形多边形的多方形, 并设计一个简单的模型, StarPoly, 来预测3D 对象的检测质量。 我们根据SD- road Rioral deal devely 进行大规模的测测测测测测测, 。