Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose 'Localization Recall Precision (LRP) Error', a new metric which we specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, Optimal LRP determines the 'best' confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector which uses a SOTA still image object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. We provide the source code that can compute LRP for the PASCAL VOC and MSCOCO datasets in https://github.com/cancam/LRP. Our source code can easily be adapted to other datasets as well.
翻译:平均精确度 (AP) 是回溯精确度( RP) 曲线下的平均精确度( AP), 是物体探测的标准性能度。 尽管它被广泛接受, 它有许多缺点, 其中最重要的缺点是 (一) 无法分辨非常不同的 RP曲线, 以及 (二) 缺乏直接测量约束框本地化精确度。 在本文中, 我们提议“ 本地化召回精确度( LRP) 错误 ”, 这是一种我们专门设计用于目标探测的新指标。 LRP 错误由三个组成部分组成, 与本地化、 虚假负( GNF) 率和假正反向目标( FP) 率( FP) 有关。 在 LRP 上, 我们引入“ Optial LRP ”, 最低可实现的LRP差差, 代表着该探测器的最佳可实现配置配置, 以及框框的紧凑。 与AP 相比, 最优化LRP 确定一个“ 最佳” 级, 平衡所有本地化和回溯精确度( Fal- Rest) 的值( LAS) 水平, 我们用更深的 Offeral- dal- dal) 数据级, 我们用了一个比级的SO) 和最高级的S- mal- sal- deal- deal- sal- sal) 。