这是一个基于cnn的图像人脸检测的开源库。CNN模型已被转换为C源文件中的静态变量。源代码不依赖于任何其他库。你所需要的只是一个c++编译器。您可以使用c++编译器在Windows、Linux、ARM和任何平台下编译源代码。SIMD指令用于加速检测。如果您使用Intel CPU或NEON for ARM,则可以启用AVX2。在目录中还提供了模型文件models/examples/libfacedetectcn -example.cpp展示了如何使用这个库。
使用g++编译源代码时,请添加-03以启用优化。
使用Microsoft Visual Studio编译源代码时,请选择“最大化速度/-02”。
1.设置AArch64交叉编译器(请参考AArch64工具链.cmake)
2.设置OpenCV路径,因为示例代码依赖于OpenCV
OpenCV Haar+AdaBoost以最小的面尺寸48x48运行
只检测人脸,不包含地区检测。
最小面尺寸~12x12
Intel(R) Core(TM) i7-7700 CPU @ 3.6GHz
只检测人脸,不包含地区检测。
最小面尺寸~12x12
Raspberry Pi 3B+, 博通 BCM2837BO, Cortex-A53 (ARMv8) 64位SoC @ 1.4GHz
Shiqi Yu, shiqi.yu@gmail.com
Jia Wu
Shengyin Wu
Dong Xu
本研究由深圳市科学基金(批准号:JCYJ20150324141711699)。
英文原文:https://github.com/ShiqiYu/libfacedetection
译者:Leo