In this paper, we propose $\tau$GAN a tensor-based method for modeling the latent space of generative models. The objective is to identify semantic directions in latent space. To this end, we propose to fit a multilinear tensor model on a structured facial expression database, which is initially embedded into latent space. We validate our approach on StyleGAN trained on FFHQ using BU-3DFE as a structured facial expression database. We show how the parameters of the multilinear tensor model can be approximated by Alternating Least Squares. Further, we introduce a tacked style-separated tensor model, defined as an ensemble of style-specific models to integrate our approach with the extended latent space of StyleGAN. We show that taking the individual styles of the extended latent space into account leads to higher model flexibility and lower reconstruction error. Finally, we do several experiments comparing our approach to former work on both GANs and multilinear models. Concretely, we analyze the expression subspace and find that the expression trajectories meet at an apathetic face that is consistent with earlier work. We also show that by changing the pose of a person, the generated image from our approach is closer to the ground truth than results from two competing approaches.


翻译:在本文中,我们提出以$tau$GAN为主的模型模型模型, 用于模拟基因模型的潜在空间。 目标是在潜在空间中确定语义方向。 为此, 我们提议将多线性感应模型安装在一个结构化面部表达空间数据库中, 最初嵌入到潜在空间中。 我们用 BU-3DFE 作为结构化面部表达数据库来验证我们在FFHQ上培训的StyleGAN方法。 我们用BU-3DFE作为结构化面部表达表达式数据库。 我们展示了多种线性感应模型的参数如何被对等于对最小广场的对等。 此外, 我们引入了一种结构式分离的感应力模型, 定义为一种风格性特异模型的组合, 将我们的方法与StelegleGAN的扩展的潜在表达式表达式空间结合起来。 我们显示, 将扩展的潜伏层空间的个别风格纳入考虑中, 会导致更高的模型灵活性和较低的重建错误。 最后, 我们做了一些实验, 比较我们以前在GANs和多线性模型上的工作。 我们具体地分析表达式子空间, 发现, 表达式的表达轨相交会从一个更接近于更接近于更接近于更接近于更接近的图像的方法。

0
下载
关闭预览

相关内容

深度生成模型综述
专知会员服务
52+阅读 · 2022年1月2日
专知会员服务
22+阅读 · 2021年8月10日
专知会员服务
40+阅读 · 2021年7月4日
专知会员服务
16+阅读 · 2021年5月13日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Co-Training for Semi-Supervised Image Segmentation
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年4月29日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员