We present a semi-parametric approach to photographic image synthesis from semantic layouts. The approach combines the complementary strengths of parametric and nonparametric techniques. The nonparametric component is a memory bank of image segments constructed from a training set of images. Given a novel semantic layout at test time, the memory bank is used to retrieve photographic references that are provided as source material to a deep network. The synthesis is performed by a deep network that draws on the provided photographic material. Experiments on multiple semantic segmentation datasets show that the presented approach yields considerably more realistic images than recent purely parametric techniques. The results are shown in the supplementary video at https://youtu.be/U4Q98lenGLQ
翻译:我们从语义布局对摄影图像合成采用半参数法,该方法结合了参数和非参数技术的互补优势。非参数部分是一组由培训图像组成的图像片段的记忆库。根据测试时的新型语义布局,记忆库用来检索作为深网络原始材料的图片参考资料。该合成由一个利用所提供的图片材料的深度网络进行。对多个语义分割数据集的实验表明,所提出的方法产生的图像比最近的纯参数技术要现实得多。结果见以下补充视频:https://youtu.be/U4Q98GLQ。