LibRec 精选:近期15篇推荐系统论文

2019 年 3 月 5 日 LibRec智能推荐

LibRec 精选

LibRec智能推荐 第 26 期(至2019.3.5),更新 16 篇精彩讨论内容。


一场来之不易的遇见,不知憔悴了前世多少的繁芜。愿这世上终有一人,是你奋不顾身的理由。


编者导读:本次论文更新15篇,包括多篇的序列推荐模型、基于会话的综述文章;基于树/图神经网络的推荐模型;基于增强学习的推荐模型等新工作,都值得大家重点关注。社交媒体上有趣的内容不太多,但可观察到欧洲有很多的推荐系统线下讨论会,而且很多地方已经举办了很多次了。相对地,国内在推荐系统方面的线下讨论还不活跃。


附:近期实在是太忙了,内容更新得稍慢了一些,望大家见谅。


1

【论文集】WSDM 2019的论文集:http://www.wsdm-conference.org/2019/acm-proceedings.php,包括不少推荐系统方面的论文。





1. Model-Based Reinforcement Learning for Whole-Chain Recommendations

Xiangyu Zhao, Long Xia, Jiliang Tang, Dawei Yin, Yihong Zhao

https://arxiv.org/abs/1902.03987v1

Therefore, in this paper, we study the recommendation problem with multiple (consecutive) scenarios, i.e., whole-chain recommendations. We propose a multi-agent reinforcement learning based approach (DeepChain), which can capture the sequential correlation among different scenarios and jointly optimize multiple recommendation strategies. In this paper, we introduce model-based reinforcement learning techniques to reduce the training data requirement and execute more accurate strategy updates.


2. Interest-Related Item Similarity Model Based on Multimodal Data for  Top-N Recommendation

Mohsen Guizani, Jie Guo, XiaoJiang Du, Junmei Lv, Bin Song

https://arxiv.org/abs/1902.05566v1

In this paper, we propose an end-to-end Multimodal Interest-Related Item Similarity model (Multimodal IRIS) to provide recommendations based on multimodal data source. Specifically, the Multimodal IRIS model consists of three modules, i.e., multimodal feature learning module, the Interest-Related Network (IRN) module and item similarity recommendation module. At last, the multimodal data feature learning, IRN and item similarity recommendation modules are unified into an integrated system to achieve performance enhancements and to accommodate the addition or absence of different modal data.


3. A Survey on Session-based Recommender Systems

Yan Wang, Shoujin Wang, Longbing Cao

https://arxiv.org/abs/1902.04864v1

Session-based recommender systems (SBRS) are an emerging topic in the recommendation domain and have attracted much attention from both academia and industry in recent years. Most of existing works only work on modelling the general item-level dependency for recommendation tasks. In this paper, we provide a systematic and comprehensive review on SBRS and create a hierarchical and in-depth understanding of a variety of challenges in SBRS.


4. Reinforcement Learning to Optimize Long-term User Engagement in  Recommender Systems

Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, Dawei Yin

https://arxiv.org/abs/1902.05570v1

In such an interactive manner, a good recommender system should pay more attention to user stickiness, which is far beyond classical instant metrics, and typically measured by {\bf long-term user engagement}. Directly optimizing the long-term user engagement is a non-trivial problem, as the learning target is usually not available for conventional supervised learning methods. To address these issues, in this work, we introduce a reinforcement learning framework --- FeedRec to optimize the long-term user engagement.


5. Collaborative Similarity Embedding for Recommender Systems

Yi-Hsuan Yang, Ming-Feng Tsai, Chuan-Ju Wang, Chih-Ming Chen

https://arxiv.org/abs/1902.06188v1

We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differentiate two types of proximity relations: direct proximity and k-th order neighborhood proximity. Moreover, for improving scalability and flexibility, we propose a sampling technique that is specifically designed to capture the two types of proximity relations.


6. NAIRS: A Neural Attentive Interpretable Recommendation System

Qiang Qu, Jialie Shen, Min Yang, Baocheng Li, Shuai Yu, Yongbo Wang

https://arxiv.org/abs/1902.07494v1

In this paper, we develop a neural attentive interpretable recommendation system, named NAIRS. Based on the user profiles obtained by the self-attention network, NAIRS offers personalized high-quality recommendation. This demo application with the implementation of NAIRS enables users to interact with a recommendation system, and it persistently collects training data to improve the system.


7. Joint Optimization of Tree-based Index and Deep Model for Recommender  Systems

Han Li, Xiang Li, Jie He, Ziru Xu, Pengye Zhang, Kun Gai, Han Zhu, Daqing Chang, Jian Xu

https://arxiv.org/abs/1902.07565v1

Tree-based Deep Model (TDM) for recommendation \cite{zhu2018learning} greatly improves recommendation accuracy using tree index. In tree-based recommendation methods, the quality of both the tree index and the trained user preference prediction model determines the recommendation accuracy for the most part. In our proposed joint optimization framework, the learning of index and user preference prediction model are carried out under a unified performance measure.


8. Graph Neural Networks for Social Recommendation

Dawei Yin, Eric Zhao, Jiliang Tang, Yuan He, Qing Li, Yao Ma, Wenqi Fan

https://arxiv.org/abs/1902.07243v1

In recent years, Graph Neural Networks (GNNs), which can naturally integrate node information and topological structure, have been demonstrated to be powerful in learning on graph data. These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key. For example, the user-item graph encodes both interactions and their associated opinions; social relations have heterogeneous strengths; users involve in two graphs (e.g., the user-user social graph and the user-item graph).


9. User-based collaborative filtering approach for content recommendation  in OpenCourseWare platforms

Nikola Tomasevic, Dejan Paunovic, Sanja Vranes

https://arxiv.org/abs/1902.10376v1

A content recommender system or a recommendation system represents a subclass of information filtering systems which seeks to predict the user preferences, i.e. through the content-based filtering, or user-based collaborative filtering (CF). The proposed approach also envisages a hybrid recommendation system as a combination of user-based and content-based approaches in order to provide a holistic and efficient solution for content recommendation.


10. Session-based Social Recommendation via Dynamic Graph Attention Networks

Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, Jian Tang

https://arxiv.org/abs/1902.09362v1

In that context, recommending relevant information to users becomes critical for viability. However, recommendation in online communities is a challenging problem: 1) users' interests are dynamic, and 2) users are influenced by their friends. We model dynamic user behaviors with a recurrent neural network, and context-dependent social influence with a graph-attention neural network, which dynamically infers the influencers based on users' current interests.


11. B-Script: Transcript-based B-roll Video Editing with Recommendations

Bernd Huber, Hijung Valentina Shin, Bryan Russell, Oliver Wang, Gautham J. Mysore

https://arxiv.org/abs/1902.11216v1

In video production, inserting B-roll is a widely used technique to enrich the story and make a video more engaging. We present B-Script, a system that supports B-roll video editing via interactive transcripts. Users found it easier and were faster to insert B-roll using the transcript-based interface, and they created more engaging videos when recommendations were provided.


12. Multi-Scale Quasi-RNN for Next Item Recommendation

Chaoyue He, Yong Liu, Qingyu Guo, Chunyan Miao

https://arxiv.org/abs/1902.09849v1

This paper proposes a new neural architecture, multi-scale Quasi-RNN for next item Recommendation (QR-Rec) task. Our model provides the best of both worlds by exploiting multi-scale convolutional features as the compositional gating functions of a recurrent cell. The key idea aims to capture the recurrent relations between different kinds of local features, which has never been studied previously in the context of recommendation.


13. Representation Learning for Recommender Systems with Application to the  Scientific Literature

Robin Brochier

https://arxiv.org/abs/1902.11058v1

The scientific literature is a large information network linking various actors (laboratories, companies, institutions, etc.). In this article, I present my first thesis works in partnership with an industrial company, Digital Scientific Research Technology. Finally, the interplay between textual and graph data in text-attributed heterogeneous networks remains an open research direction.


14. Degenerate Feedback Loops in Recommender Systems

Ray Jiang, Silvia Chiappa, Tor Lattimore, Andras Agyorgy, Pushmeet Kohli

https://arxiv.org/abs/1902.10730v1

Machine learning is used extensively in recommender systems deployed in products. The decisions made by these systems can influence user beliefs and preferences which in turn affect the feedback the learning system receives - thus creating a feedback loop. In this paper, we provide a novel theoretical analysis that examines both the role of user dynamics and the behavior of recommender systems, disentangling the echo chamber from the filter bubble effect.


15. MIRA: A Computational Neuro-Based Cognitive Architecture Applied to  Movie Recommender Systems

Mariana B. Santos, Amanda M. Lima, Lucas A. Silva, Felipe S. Vargas, Guilherme A. Wachs-Lopes, Paulo S. Rodrigues

https://arxiv.org/abs/1902.09291v1

Nevertheless, for decades the scientific community has proposed computational models that try to simulate their parts, specific applications, or their behavior in different situations. The most complete model in this line is undoubtedly the LIDA model, proposed by Stan Franklin with the aim of serving as a generic computational architecture for several applications. The present project is inspired by the LIDA model to apply it to the process of movie recommendation, the model called MIRA (Movie Intelligent Recommender Agent) presented percentages of precision similar to a traditional model when submitted to the same assay conditions.




登录查看更多
5

相关内容

近期必读的五篇KDD 2020【图神经网络 (GNN) 】相关论文_Part2
专知会员服务
159+阅读 · 2020年6月30日
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
69+阅读 · 2020年4月7日
近期必读的5篇AI顶会CVPR 2020 GNN (图神经网络) 相关论文
专知会员服务
78+阅读 · 2020年3月3日
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
56+阅读 · 2020年2月25日
专知会员服务
87+阅读 · 2020年1月20日
近期必读的12篇KDD 2019【图神经网络(GNN)】相关论文
专知会员服务
62+阅读 · 2020年1月10日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
3+阅读 · 2018年10月18日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
相关论文
Arxiv
20+阅读 · 2019年11月23日
Arxiv
3+阅读 · 2018年10月18日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
5+阅读 · 2017年11月13日
Top
微信扫码咨询专知VIP会员