The FEAST eigensolver is extended to the computation of the singular triplets of a large matrix $A$ with the singular values in a given interval. It is subspace iteration in nature applied to an approximate spectral projector associated with the cross-product matrix $A^TA$ and constructs approximate left and right singular subspaces corresponding to the desired singular values, onto which $A$ is projected to obtain approximations to the desired singular triplets. Approximate spectral projectors are constructed using the Chebyshev--Jackson series expansion other than contour integration and quadrature rules, and they are proven to be always symmetric positive semi-definite with the eigenvalues in $[0,1]$. Compact estimates are established for pointwise approximation errors of a specific step function that corresponds to the exact spectral projector, the accuracy of the approximate spectral projector, the number of desired singular triplets,the distance between the desired right singular subspace and the subspace generated each iteration, and the convergence of the FEAST SVDsolver. Practical selection strategies are proposed for the series degree and the subspace dimension. Numerical experiments illustrate that the FEAST SVDsolver is robust and efficient.
翻译:Fleast egensoolver 将Fleast eleast egensoolver 扩展为计算一个大型矩阵的奇特三重,其中含有一定间隔内的单值。它是在性质上用于与交叉产品矩阵相关的近似光谱投影器的次空间迭代,并建造与理想的单值相对应的左右偏左和右单子空间,其中预计A$将获得理想的奇特三重的近似近似值。近似光谱投影器是使用Cebyshev- Jackson系列扩展的,但等离子集成和等宽度规则除外。它们被证明总是对准正正半非定值与 $[10,1,1美元] 。对于一个与精确光谱投影仪相对应的具体步骤函数的点性近似近似近度误差、 近似光谱投影仪的准确度、 理想的奇特三重计数、 理想右单单基空间与生成的子空间之间的距离, 以及Fifical-Sol-Dsolver 的趋近似选择战略是美国空间的精度和空间,用于空间的亚度和Ax.NIS-Vxxxxxxxxxxxx和Fstal和Axxxxxxxxxxxxxxxxxxxx。