We propose a deep metric learning model to create embedded sub-spaces with a well defined structure. A new loss function that imposes Gaussian structures on the output space is introduced to create these sub-spaces thus shaping the distribution of the data. Having a mixture of Gaussians solution space is advantageous given its simplified and well established structure. It allows fast discovering of classes within classes and the identification of mean representatives at the centroids of individual classes. We also propose a new semi-supervised method to create sub-classes. We illustrate our methods on the facial expression recognition problem and validate results on the FER+, AffectNet, Extended Cohn-Kanade (CK+), BU-3DFE, and JAFFE datasets. We experimentally demonstrate that the learned embedding can be successfully used for various applications including expression retrieval and emotion recognition.
翻译:我们提出一个深度的衡量学习模式,以创建内嵌有明确界定的结构的子空间。引入一个新的损失功能,将高斯结构强加于输出空间,以创建这些子空间,从而形成数据分布。拥有高斯人解决方案空间的混合体因其简化和完善的结构而具有优势。它允许快速发现各类中的班级,并识别各类中流体的平均代表。我们还提出了一个新的半监督方法,以创建子类。我们展示了我们关于面部表达识别问题的方法,并验证了FER+、AffectNet、Expend Cohn-Kanade(CK+)、BU-3DFE和JAFFE数据集的结果。我们实验性地证明,学到的嵌入可以成功地用于各种应用,包括表达检索和情感识别。