深度生成模型(例如 GAN)强大之处在于,它们能够以最少的用户努力合成无数具有真实性、多样性和新颖的内容。近年来,随着大规模生成模型的质量和分辨率的不断提高,这些模型的潜在应用也不断的在增长。
然而,训练高质量生成模型需要高性能的计算平台,这使得大多数用户都无法完成这种训练。此外,训练高质量的模型还需要收集大规模数据以及复杂的预处理过程。常用的数据集(例如 ImageNet 、LSUN)需要人工标注和过滤;而专用的数据集 FFHQ Face 需要进行人脸对齐以及超分辨率预处理。此外,开发一个高级生成模型需要一组专家的领域知识,他们通常会在特定数据集的单个模型上投入数月或数年的时间,耗时较长。
这就引出了一个问题:普通用户如何创建自己的生成模型?比如,用猫来创造艺术作品的用户可能不愿意使用普通的猫模型,而希望是一种特殊猫的定制模特,摆着特定的姿势:在附近、斜倚着,或者都向左看。一般来说,要获得这样的定制模型,用户必须管理成千上万的向左倾斜的猫图像,然后需要领域专家花几个月的时间进行模型训练和参数调整,才能生成一个较为理想的模型。
在这项工作中,朱俊彦等来自 CMU 和 MIT 的研究者提出 GAN Sketching,该方法通过一个或多个草图重写 GAN,让新手用户更容易地训练 GAN。具体地,该方法还能通过用户草图改变原始 GAN 模型的权重,并且通过跨域(cross-domain )对抗损失鼓励模型输出来匹配用户草图。
此外,该研究还探索了不同的正则化方法,以保持原始模型的多样性和图像质量。