LiDAR-based 3D object detection and panoptic segmentation are two crucial tasks in the perception systems of autonomous vehicles and robots. In this paper, we propose All-in-One Perception Network (AOP-Net), a LiDAR-based multi-task framework that combines 3D object detection and panoptic segmentation. In this method, a dual-task 3D backbone is developed to extract both panoptic- and detection-level features from the input LiDAR point cloud. Also, a new 2D backbone that intertwines Multi-Layer Perceptron (MLP) and convolution layers is designed to further improve the detection task performance. Finally, a novel module is proposed to guide the detection head by recovering useful features discarded during down-sampling operations in the 3D backbone. This module leverages estimated instance segmentation masks to recover detailed information from each candidate object. The AOP-Net achieves state-of-the-art performance for published works on the nuScenes benchmark for both 3D object detection and panoptic segmentation tasks. Also, experiments show that our method easily adapts to and significantly improves the performance of any BEV-based 3D object detection method.
翻译:以 3DAR 为基础的三维天体探测和光学分解是自主飞行器和机器人感知系统的两大关键任务。 在本文中,我们提出一个基于全在一视网(AOP-Net)的多任务框架,即三维天体探测和全光分解相结合的三维多任务框架。在这个方法中,开发了一个双塔3D主干柱,从输入的李DAR 点云中提取光学和检测级特性。此外,设计一个新的二维主干柱,将多射线天体(MLP)和演动层结合起来,以进一步改善探测任务性能。最后,我们提出了一个新模块,通过恢复在三维主干线下取样操作过程中丢弃的有用功能来指导探测头。这个模块利用实例分解面面仪估计从每个候选对象中获取详细信息。 双向网络为已出版的 Nuscenes 3D 对象探测和光学分解任务基准的出版作品取得最新状态性能。此外,实验对象显示我们的方法很容易适应任何BD 方法,并大大改进任何B-D 。