Few-shot object detection (FSOD) aims to expand an object detector for novel categories given only a few instances for training. The few training samples restrict the performance of FSOD model. Recent text-to-image generation models have shown promising results in generating high-quality images. How applicable these synthetic images are for FSOD tasks remains under-explored. This work extensively studies how synthetic images generated from state-of-the-art text-to-image generators benefit FSOD tasks. We focus on two perspectives: (1) How to use synthetic data for FSOD? (2) How to find representative samples from the large-scale synthetic dataset? We design a copy-paste-based pipeline for using synthetic data. Specifically, saliency object detection is applied to the original generated image, and the minimum enclosing box is used for cropping the main object based on the saliency map. After that, the cropped object is randomly pasted on the image, which comes from the base dataset. We also study the influence of the input text of text-to-image generator and the number of synthetic images used. To construct a representative synthetic training dataset, we maximize the diversity of the selected images via a sample-based and cluster-based method. However, the severe problem of high false positives (FP) ratio of novel categories in FSOD can not be solved by using synthetic data. We propose integrating CLIP, a zero-shot recognition model, into the FSOD pipeline, which can filter 90% of FP by defining a threshold for the similarity score between the detected object and the text of the predicted category. Extensive experiments on PASCAL VOC and MS COCO validate the effectiveness of our method, in which performance gain is up to 21.9% compared to the few-shot baseline.


翻译:少样本目标检测(FSOD)旨在通过只有少数实例的训练来扩展物体检测器用于新的类别。少量的训练样本限制了FSOD模型的性能。最近的文本到图像生成模型已经展示了高质量图像的生成能力,然而这些合成图像对于FSOD任务的应用尚未得到充分探索。本文探究了由最先进的文本到图像生成器生成的人工图像如何帮助FSOD任务。我们重点关注两个方面:(1)如何使用人工数据提高FSOD性能?(2)如何从大规模人工数据集中挑选出代表性样本?我们设计了一种基于复制-粘贴的人工数据生成过程。具体地,我们使用显著性对象检测方法检测原始生成的图像,然后根据显著图对主要目标进行最小包围盒剪裁,接着将剪裁后的目标随机粘贴到来自基础数据集的图像上。我们还研究了文本到图像生成器的输入文本和使用的人工图像数量对性能的影响。为了构建一个代表性的人工训练集,我们通过基于样本和基于聚类的方法最大化所选图像的多样性。然而,在FSOD中新类别的高假阳性(FP)率问题无法通过使用人工数据解决。因此,我们提出将零样本识别模型CLIP集成到FSOD管线中,通过定义检测到的对象和预测类别文本之间的相似度得分阈值来过滤90%的FP。在PASCAL VOC和MS COCO上广泛的实验验证了我们的方法的有效性,在少样本基线的基础上性能提高了21.9%。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
浙大《深度学习低样本目标检测》综述论文
专知会员服务
73+阅读 · 2021年12月13日
重邮高新波等最新《少样本目标检测算法》综述论文
专知会员服务
32+阅读 · 2021年11月2日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
ICLR2019 | 深入了解小样本(Few-shot)分类
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
VIP会员
相关VIP内容
浙大《深度学习低样本目标检测》综述论文
专知会员服务
73+阅读 · 2021年12月13日
重邮高新波等最新《少样本目标检测算法》综述论文
专知会员服务
32+阅读 · 2021年11月2日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员