Deep neural networks have repeatedly been shown to be non-robust to the uncertainties of the real world. Even subtle adversarial attacks and naturally occurring distribution shifts wreak havoc on systems relying on deep neural networks. In response to this, current state-of-the-art techniques use data-augmentation to enrich the training distribution of the model and consequently improve robustness to natural distribution shifts. We propose an alternative approach that allows the system to recover from distribution shifts online. Specifically, our method applies a sequence of semantic-preserving transformations to bring the shifted data closer in distribution to the training set, as measured by the Wasserstein distance. We formulate the problem of sequence selection as an MDP, which we solve using reinforcement learning. To aid in our estimates of Wasserstein distance, we employ dimensionality reduction through orthonormal projection. We provide both theoretical and empirical evidence that orthonormal projection preserves characteristics of the data at the distributional level. Finally, we apply our distribution shift recovery approach to the ImageNet-C benchmark for distribution shifts, targeting shifts due to additive noise and image histogram modifications. We demonstrate an improvement in average accuracy up to 14.21% across a variety of state-of-the-art ImageNet classifiers.
翻译:深心神经网络被反复证明对真实世界的不确定因素没有破坏作用。即使是微妙的对抗性攻击和自然发生的分配变化也会对依赖深心神经网络的系统造成破坏。对此,目前最先进的技术使用数据放大来丰富模型的培训分布,从而增强自然分配变化的稳健性。我们建议了一种替代方法,使系统能够从在线分配转移中恢复过来。具体地说,我们的方法采用一种语义保留转换的顺序,使数据在分布上更接近于培训数据集,以瓦瑟斯坦距离来衡量。我们把序列选择的问题发展成一个MDP,我们用强化学习解决了这一问题。为了帮助估计瓦瑟斯坦距离,我们采用了数据放大法,我们通过心电图的预测来降低维度。我们提供了理论和实验证据,说明正态预测保留了数据在分布层的特性。最后,我们用我们的分布变化转换法将我们的分布移动法用于图像网络-C基准,目标是根据添加的噪音和图像进行转换。我们用强化的图像网络-图像-图象修改,我们展示了平均的精确度到14.21。我们展示了整个图像流的图像流到14.