Global unitary transformations (OPTSWAPS) that optimally increase the bias of any mixed computation qubit in a quantum system -- represented by a diagonal density matrix -- towards a particular state of the computational basis which, in effect, increases its purity are presented. Quantum circuits that achieve this by implementing the above data compression technique -- a generalization of the 3B-Comp used before -- are described. These circuits enable purity increment in the computation qubit by maximally transferring part of its von Neumann or Shannon entropy to any number of surrounding qubits and are valid for the complete range of initial biases. Using the optswaps, a practicable new method that algorithmically achieves hierarchy-dependent cooling of qubits to their respective limits in an engineered quantum register opened to the heat-bath is delineated. In addition to multi-qubit purification and satisfying two of DiVincenzo's criteria for quantum computation in some architectures, the implications of this work for quantum data compression and quantum thermodynamics are discussed.
翻译:描述全球统一变换(OPTSWAPS),优化地增加量子系统中任何混合计算量子的偏差 -- -- 以对数密度矩阵为代表 -- -- 偏向于计算基础的特定状态,而计算基础实际上增加了纯度。通过实施上述数据压缩技术 -- -- 之前使用的3B-Comp的概括化 -- -- 实现这一偏差的量子电路。这些电路通过将 von Neumann 或香农 entropy的一部分最大程度地转移给任何数量周围的象子,使计算量子的纯度增加,并适用于完整的初始偏差范围。使用选取法,这是一种可行的新方法,在为热吸热开的工程量登记册中,按顺序根据各自的限制实现方位的冷却。除了多位净化和满足DiVincenzo在某些结构中进行量计算的两个标准外,还讨论了这项工作对量子数据压缩和量温动力学的影响。