The ZX-calculus is a graphical language for suitably represented tensor networks, called ZX-diagrams. Calculations are performed by transforming ZX-diagrams with rewrite rules. The ZX-calculus has found applications in reasoning about quantum circuits, condensed matter systems, quantum algorithms, quantum error correcting codes, and counting problems. A key notion is the stabiliser fragment of the ZX-calculus, a subfamily of ZX-diagrams for which rewriting can be done efficiently in terms of derived simplifying rewrites. Recently, higher dimensional qudits - in particular, qutrits - have gained prominence within quantum computing research. The main contribution of this work is the derivation of efficient rewrite strategies for the stabiliser fragment of the qutrit ZX-calculus. Notably, this constitutes a first non-trivial step towards the simplification of qutrit quantum circuits. We then give further unexpected areas in which these rewrite strategies provide complexity-theoretic insight; namely, we reinterpret known results about evaluating the Jones polynomial, an important link invariant in knot theory, and counting graph colourings.
翻译:ZX 计算器是适当代表的 Exor 网络的图形语言,称为 ZX- diagrams 。 计算方法是用重写规则转换 ZX- diagrams 。 ZX 计算器在量子电路、 浓缩物质系统、 量子算法、 量子错误校正代码和计数等问题的推理中找到了应用。 一个关键的概念是 ZX 计算器的固化器碎片, 一种ZX diagrams 的子组, 可以用衍生的简化重写来有效地进行重写。 最近, 更高维度的夸脱( 特别是qutrits) 在量子计算研究中占据了显著地位。 这项工作的主要贡献是生成了ZX caluculus 的固化器碎片的高效重写策略。 值得注意的是, 这是简化 Qortitrit 量子电路路的首个非三边步骤。 我们接着给出了这些意外的领域, 这些重写策略提供了复杂度- 理论的精度洞测, 也就是我们所知道的重要的 方向 。