Quantum amplitude estimation is a key sub-routine of a number of quantum algorithms with various applications. We propose an adaptive algorithm for interval estimation of amplitudes. The quantum part of the algorithm is based only on Grover's algorithm. The key ingredient is the introduction of an adjustment factor, which adjusts the amplitude of good states such that the amplitude after the adjustment, and the original amplitude, can be estimated without ambiguity in the subsequent step. We show with numerical studies that the proposed algorithm uses a similar number of quantum queries to achieve the same level of precision $\epsilon$ compared to state-of-the-art algorithms, but the classical part, i.e., the non-quantum part, has substantially lower computational complexity. We rigorously prove that the number of oracle queries achieves $O(1/\epsilon)$, i.e., a quadratic speedup over classical Monte Carlo sampling, and the computational complexity of the classical part achieves $O(\log(1/\epsilon))$, both up to a double-logarithmic factor.
翻译:量子振幅估测是一系列量子算法的关键次常规,有各种应用。 我们建议对振幅的间隔估测采用一个适应性算法。 算法的量子部分仅以 Grover 的算法为基础。 关键要素是引入一个调整系数, 调整良好状态的振幅, 使调整后的振幅和原来的振幅可以在随后的步骤中不含糊地加以估计。 我们用数字研究表明, 提议的算法使用类似数量的量子查询来实现与最新算法相同的精确度 $\ epslon 值, 但传统的部分, 即非量子部分, 的计算复杂性要低得多。 我们严格证明, 质子查询的数量达到$O( 1/ eepsilon) $, 即优于经典蒙特卡洛 取样的四度加速度, 以及经典部分的计算复杂性达到$O( 1/\ epslon) $, 两者都达到双数系数。