Here we present a quantum algorithm for clustering data based on a variational quantum circuit. The algorithm allows to classify data into many clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale Quantum (NISQ) devices. The idea of the algorithm relies on reducing the clustering problem to an optimization, and then solving it via a Variational Quantum Eigensolver (VQE) combined with non-orthogonal qubit states. In practice, the method uses maximally-orthogonal states of the target Hilbert space instead of the usual computational basis, allowing for a large number of clusters to be considered even with few qubits. We benchmark the algorithm with numerical simulations using real datasets, showing excellent performance even with one single qubit. Moreover, a tensor network simulation of the algorithm implements, by construction, a quantum-inspired clustering algorithm that can run on current classical hardware.
翻译:这里我们提出了一个基于变量量子电路的数据分组量子算法。 该算法允许将数据分类为多个组群, 并且可以很容易地在几个微位 Noisy 中等量量子( NISQ) 设备中实施。 算法的理念依赖于将组群问题降低到优化, 然后通过一个变量量量子 Eigensolver ( VQE) 与非正方位量子状态相结合来解决这个问题。 实际上, 该方法使用目标Hilbert 空间的最大- orphogoal 状态, 而不是通常的计算基础, 允许大量组群群即使用少量qubit 来考虑。 我们将算法以数字模拟作为基准, 即使使用单一的qubit 也能显示极好的性能。 此外, 对算法工具进行数向网络模拟, 通过构造, 一种可运行于当前经典硬件的量子驱动的量子组合算法。