We introduce a pruning algorithm that provably sparsifies the parameters of a trained model in a way that approximately preserves the model's predictive accuracy. Our algorithm uses a small batch of input points to construct a data-informed importance sampling distribution over the network's parameters, and adaptively mixes a sampling-based and deterministic pruning procedure to discard redundant weights. Our pruning method is simultaneously computationally efficient, provably accurate, and broadly applicable to various network architectures and data distributions. Our empirical comparisons show that our algorithm reliably generates highly compressed networks that incur minimal loss in performance relative to that of the original network. We present experimental results that demonstrate our algorithm's potential to unearth essential network connections that can be trained successfully in isolation, which may be of independent interest.


翻译:我们引入了一种修剪算法, 使经过训练的模型的参数以大致保持模型预测准确性的方式扩大范围。 我们的算法使用一小批输入点来构建网络参数的数据知情重要性抽样分布,并适应性地混合一种基于取样和确定性的裁剪程序来抛弃多余的重量。 我们的修剪方法在计算上既有效,又准确,并广泛适用于各种网络架构和数据分布。 我们的经验性比较表明,我们的算法可靠地生成了高度压缩的网络,其性能与原始网络的性能相比损失微乎其微。 我们展示了实验结果,表明我们的算法有可能分离出基本的网络连接,这些连接可以在孤立中成功训练,这或许是独立的。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
27+阅读 · 2020年6月19日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员