We address the task of 6D multi-object pose: given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object. We propose a new approach to 6D object pose estimation which consists of an end-to-end differentiable architecture that makes use of geometric knowledge. Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy. We use a novel differentiable layer to perform pose refinement by solving an optimization problem we refer to as Bidirectional Depth-Augmented Perspective-N-Point (BD-PnP). Our method achieves state-of-the-art accuracy on standard 6D Object Pose benchmarks. Code is available at https://github.com/princeton-vl/Coupled-Iterative-Refinement.
翻译:我们处理6D多对象布局的任务:考虑到一套已知的3D对象和RGB或RGB-D输入图像,我们检测和估计每个对象的6D构成情况。我们提议对6D对象提出新的估计方法,其中包括一个利用几何知识的端到端差异结构。我们的方法反复地以紧密结合的方式完善了外形和通信,使我们能够动态地删除外端,以提高准确性。我们使用一个新的不同层,通过解决我们称为双向深度增强视角-N-点(BD-PnP)的优化问题来进行面貌改进。我们的方法在标准6D对象布局基准上达到了最先进的精确度。代码可在 https://github.com/princton-vl/Couppled-Iterative-Refinement查阅。