Many real-world optimization problems involve uncertain parameters with probability distributions that can be estimated using contextual feature information. In contrast to the standard approach of first estimating the distribution of uncertain parameters and then optimizing the objective based on the estimation, we propose an \textit{integrated conditional estimation-optimization} (ICEO) framework that estimates the underlying conditional distribution of the random parameter while considering the structure of the optimization problem. We directly model the relationship between the conditional distribution of the random parameter and the contextual features, and then estimate the probabilistic model with an objective that aligns with the downstream optimization problem. We show that our ICEO approach is asymptotically consistent under moderate regularity conditions and further provide finite performance guarantees in the form of generalization bounds. Computationally, performing estimation with the ICEO approach is a non-convex and often non-differentiable optimization problem. We propose a general methodology for approximating the potentially non-differentiable mapping from estimated conditional distribution to optimal decision by a differentiable function, which greatly improves the performance of gradient-based algorithms applied to the non-convex problem. We also provide a polynomial optimization solution approach in the semi-algebraic case. Numerical experiments are also conducted to show the empirical success of our approach in different situations including with limited data samples and model mismatches.
翻译:许多现实世界优化问题涉及不确定参数,其概率分布可以使用背景特征信息加以估计。与首先估计不确定参数的分布,然后根据估算优化目标的标准方法不同,我们提议了一个计算框架,在考虑优化问题的结构时,估算随机参数的基本有条件分布;我们直接模拟随机参数的有条件分布和背景特征之间的关系,然后根据与下游优化问题相一致的目标,估算概率模型。我们表明,在适度的常规条件下,我们的IPEO方法是暂时一致的,并进一步以一般化界限的形式提供有限的绩效保证。计算时,与IPEO方法进行估算是一个非covex和往往不差别的优化问题。我们提出了一种总体方法,以适应潜在的不差别的模型分布,从估计的有条件分布到最佳决定,与下游优化问题相一致。我们表明,在中等常规条件下,我们采用的基于梯度的算法的性算得相当一致,进一步改进了在非凝固度的模型模型模型中,包括模拟实验中,我们提供了一种不同的实验性模型的成功性模型。我们还提出了一种不同的实验方法,在非精确性模型模型模型模型中,我们也展示了在非精确性模型上的成功性模型。