In the field of radar parameter estimation, Cramer-Rao bound (CRB) is a commonly used theoretical limit. However, CRB is only achievable under high signal-to-noise (SNR) and does not adequately characterize performance in low and medium SNRs. In this paper, we employ the thoughts and methodologies of Shannon's information theory to study the theoretical limit of radar parameter estimation. Based on the posteriori probability density function of targets' parameters, joint range-scattering information and entropy error (EE) are defined to evaluate the performance. The closed-form approximation of EE is derived, which indicates that EE degenerates to the CRB in the high SNR region. For radar ranging, it is proved that the range information and the entropy error can be achieved by the sampling a posterior probability estimator, whose performance is entirely determined by the theoretical posteriori probability density function of the radar parameter estimation system. The range information and the entropy error are simulated with sampling a posterior probability estimator, where they are shown to outperform the CRB as they can be achieved under all SNR conditions


翻译:在雷达参数估计领域,Cramer-Rao绑定(CRB)是一个常用的理论限制。然而,CRB只有在高信号到噪音(SNR)下才能实现,并且没有适当描述中低信号到噪音(SNR)的性能。在本文中,我们使用香农信息理论的想法和方法来研究雷达参数估计的理论限度。根据目标参数的事后概率密度功能、联合射程感应信息以及诱导误差(EEE)定义来评估性能。EE的闭式近似是导出的结果,表明EEE在高信号到噪音(SNR)区域向CRB变形。关于雷达测距,可以证明通过取样一个远光概率估测仪,其性能完全由雷达参数估计系统的理论后位概率密度函数决定,其性能完全由测得。范围信息和诱导误值通过取样后概率估测算器模拟出,显示在SRB的所有条件下均能超越CRB。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月30日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员