Estimating the distance of objects is a safety-critical task for autonomous driving. Focusing on short-range objects, existing methods and datasets neglect the equally important long-range objects. In this paper, we introduce a challenging and under-explored task, which we refer to as Long-Range Distance Estimation, as well as two datasets to validate new methods developed for this task. We then proposeR4D, the first framework to accurately estimate the distance of long-range objects by using references with known distances in the scene. Drawing inspiration from human perception, R4D builds a graph by connecting a target object to all references. An edge in the graph encodes the relative distance information between a pair of target and reference objects. An attention module is then used to weigh the importance of reference objects and combine them into one target object distance prediction. Experiments on the two proposed datasets demonstrate the effectiveness and robustness of R4D by showing significant improvements compared to existing baselines. We are looking to make the proposed dataset, Waymo OpenDataset - Long-Range Labels, available publicly at waymo.com/open/download.
翻译:估计天体的距离是自动驾驶的安全关键任务。 聚焦于短距离天体、 现有方法和数据集忽略了同等重要的长距离天体。 在本文中, 我们引入了具有挑战性和探索不足的任务, 我们称之为“ 长距离远距离动画”, 以及两个数据集, 以验证为此任务开发的新方法。 我们然后提议R4D, 这是第一个通过在现场使用已知距离的引用来准确估计长距离天体距离的框架。 从人类的感知中汲取灵感, R4D 通过连接目标对象到所有引用, 构建一个图形。 图形中的边缘将一对目标和参考对象之间的相对距离信息编码。 然后, 将关注模块用于衡量引用对象的重要性, 并将其合并到一个目标天体距离预测中。 对两个拟议数据集的实验显示与现有基线相比的重大改进, 显示 R4D 的有效性和稳健性。 我们期待将拟议的数据集“ Waymo OpenDataset - Long- Rage Labels, 在路内可以公开查阅 / / oploadloadloadloadloadlovely 。