In-bed pose estimation has shown value in fields such as hospital patient monitoring, sleep studies, and smart homes. In this paper, we explore different strategies for detecting body pose from highly ambiguous pressure data, with the aid of pre-existing pose estimators. We examine the performance of pre-trained pose estimators by using them either directly or by re-training them on two pressure datasets. We also explore other strategies utilizing a learnable pre-processing domain adaptation step, which transforms the vague pressure maps to a representation closer to the expected input space of common purpose pose estimation modules. Accordingly, we used a fully convolutional network with multiple scales to provide the pose-specific characteristics of the pressure maps to the pre-trained pose estimation module. Our complete analysis of different approaches shows that the combination of learnable pre-processing module along with re-training pre-existing image-based pose estimators on the pressure data is able to overcome issues such as highly vague pressure points to achieve very high pose estimation accuracy.
翻译:在医院病人监测、睡眠研究和智能家庭等领域,床内姿态估计显示出在医院病人监测、睡眠研究和智能家庭等领域的价值。在本文件中,我们探索了不同战略,以探测来自高度模糊的压力数据的身体结构,并借助于先前存在的姿势估计师。我们通过直接使用或再用两个压力数据集来检查预先训练的姿势估计师的性能。我们还探索了其他战略,利用可学习的预处理域适应步骤,将模糊的压力图转化为接近预期的共同目标输入空间的表示,从而形成估算模块。因此,我们使用一个具有多重尺度的完全同步网络,向预先训练的姿势估计模块提供压力图的面貌特征。我们对不同方法的全面分析表明,可学习的预处理模块与再培训前基于图像的压力数据估计师相结合,能够克服诸如高度模糊的压力点等问题,从而达到非常高的姿势估计准确性。