Locality is a crucial property for efficiently optimising black-box problems with randomized search heuristics. However, in practical applications, it is not likely to always find such a genotype encoding of candidate solutions that this property is upheld with respect to the Hamming distance. At the same time, it may be possible to use domain-specific knowledge to define a metric with locality property. We propose two mutation operators to solve such optimization problems more efficiently using the metric. The first operator assumes prior knowledge about the distance, the second operator uses the distance as a black box. Those operators apply an estimation of distribution algorithm to find the best mutant according to the defined in the paper function, which employs the given distance. For pseudo-boolean and integer optimization problems, we experimentally show that both mutation operators speed up the search on most of the functions when applied in considered evolutionary algorithms and random local search. Moreover, those operators can be applied in any randomized search heuristic which uses perturbations. However, our mutation operators increase wall-clock time and so are helpful in practice when distance is (much) cheaper to compute than the real objective function.
翻译:暂无翻译