项目名称: 压缩感知与稀疏信号恢复
项目编号: No.11471012
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 毕宁
作者单位: 中山大学
项目金额: 65万元
中文摘要: 近年来,压缩感知(Compressed Sensing)成为了信号分析与处理领域最为热门的研究课题之一。由于其理论彻底改变了传统的Nyquist-Shannon 信号采样规则,从而对相关领域的影响和发展产生了新的启示。本项目利用压缩感知思想,对稀疏信号的恢复问题进行深入的研究。主要研究内容是以固定测量矩阵A为前提,鉴于计算测量矩阵A的RIP常数(RIC)是一个NP难问题,所以我们将避免使用RIP,而考虑k稀疏信号x可极小恢复的概率估计,从而达到对任意给定一个测量矩阵A,就能得到稀疏信号可极小恢复概率的分布。最后,对一个有实际意义的测量矩阵A,研究其可极小恢复信号x的支集分布情况。本项目预期研究成果在诸如脑信号(fMRI,EEG,Neural Spike Data等)稀疏表示的分析处理等应用问题中,具有十分重要的意义。
中文关键词: 稀疏表示;逼近论;最优恢复;小波分析;逼近误差
英文摘要: In recent years, one of the hot researching in the field of signal analysis and processing is compressed sensing. According to the theory of compressed sensing, the rule of traditional Nyquist-Shannon sampling theorem is not necessary. Therefore, compressed sensing push forward a series of development with the new idea in many related application fields. In this project, we will focus on sparse signal recovery with an in-depth research for a fixed measurement matrix A. Due to the NP-hardness of computing RIC (Restricted Isometry Constant) for any given measurement matrix A, we will consider the probability of a sparse signal x can be minimization recovery and avoid RIP (Restricted Isometry Property), and achive the aim that there are probability distribution of k sparse signal can be minimization recovery for any fixed measurement matrix A. At last, we will discuss the location of support x,where x can be minimization recovery for a practical measurement matrix A. It is important for brain signal analysis and processing, such as Functional Magnetic Resonance Imaging, Electroencephalogram and Neural Spike Data,etc.
英文关键词: sparse representation;approximation theory;optimal recovery;wavelet analysis;approximate error