As the perception range of LiDAR increases, LiDAR-based 3D object detection becomes a dominant task in the long-range perception task of autonomous driving. The mainstream 3D object detectors usually build dense feature maps in the network backbone and prediction head. However, the computational and spatial costs on the dense feature map are quadratic to the perception range, which makes them hardly scale up to the long-range setting. To enable efficient long-range LiDAR-based object detection, we build a fully sparse 3D object detector (FSD). The computational and spatial cost of FSD is roughly linear to the number of points and independent of the perception range. FSD is built upon the general sparse voxel encoder and a novel sparse instance recognition (SIR) module. SIR first groups the points into instances and then applies instance-wise feature extraction and prediction. In this way, SIR resolves the issue of center feature missing, which hinders the design of the fully sparse architecture for all center-based or anchor-based detectors. Moreover, SIR avoids the time-consuming neighbor queries in previous point-based methods by grouping points into instances. We conduct extensive experiments on the large-scale Waymo Open Dataset to reveal the working mechanism of FSD, and state-of-the-art performance is reported. To demonstrate the superiority of FSD in long-range detection, we also conduct experiments on Argoverse 2 Dataset, which has a much larger perception range ($200m$) than Waymo Open Dataset ($75m$). On such a large perception range, FSD achieves state-of-the-art performance and is 2.4$\times$ faster than the dense counterpart. Codes will be released at https://github.com/TuSimple/SST.
翻译:随着LiDAR的感知范围增加,基于 LiDAR 的 3D 对象探测成为自主驱动远程感知任务中的一项主要任务。 主流 3D 对象探测器通常在网络主干和预测头上建立密度强的地貌图。 然而, 密度大的地貌地图的计算和空间成本是到感知范围的四进式的, 这使得它们几乎无法扩大到长距离设置。 为了能够进行高效的长距离LiDAR 目标探测, 我们建造了一个完全稀疏的 3D$ 对象探测器( FSD)。 FSD 的计算和空间成本大约是直线到点的数量和感知范围以外的。 FSD通常建在一般的微点上, FSDD 和新颖的微小实例识别模块上。 SDR首先将这些点集中起来, 然后应用实例性地提取和预测。 SIR 解决中心特征缺失的问题, 妨碍所有中心基或锚基的探测器设计完全稀少的3D 。 此外, SISD 的计算和SD 在先前基于点的近点的邻居查询方法中, 通过组的大规模SD 将SD 向数据测测测测测算到大的SD 的SD 的S- 的测程的测算, 我们的测程的测程的测程的测程的测程的测程的测程的测程的测程的测程将大大到到到到 。