We consider priority-based matching problems with limited farsightedness. We show that, once agents are sufficiently farsighted, the matching obtained from the Top Trading Cycles (TTC) algorithm becomes stable: a singleton set consisting of the TTC matching is a horizon-$k$ vNM stable set if the degree of farsightedness is greater than three times the number of agents in the largest cycle of the TTC. On the contrary, the matching obtained from the Deferred Acceptance (DA) algorithm may not belong to any horizon-$k$ vNM stable set for $k$ large enough.
翻译:我们考虑了基于优先权的相配问题和有限的远视性。我们表明,一旦代理人有足够的远见,从顶层贸易周期算法中获得的匹配就会变得稳定:由TTC匹配组成的单吨数如果远视程度是TTC最大周期内代理人人数的三倍以上,则由TTC匹配组成的单吨数是地平线-美元和NM稳定数。相反,从推迟接受算法中获得的匹配数可能不属于任何高视距-美元或NM稳定值的足够大的数额。