As a special infinite-order vector autoregressive (VAR) model, the vector autoregressive moving average (VARMA) model can capture much richer temporal patterns than the widely used finite-order VAR model. However, its practicality has long been hindered by its non-identifiability, computational intractability, and relative difficulty of interpretation. This paper introduces a novel infinite-order VAR model which, with only a little sacrifice of generality, inherits the essential temporal patterns of the VARMA model but avoids all of the above drawbacks. As another attractive feature, the temporal and cross-sectional dependence structures of this model can be interpreted separately, since they are characterized by different sets of parameters. For high-dimensional time series, this separation motivates us to impose sparsity on the parameters determining the cross-sectional dependence. As a result, greater statistical efficiency and interpretability can be achieved, while no loss of temporal information is incurred by the imposed sparsity. We introduce an $\ell_1$-regularized estimator for the proposed model and derive the corresponding nonasymptotic error bounds. An efficient block coordinate descent algorithm and a consistent model order selection method are developed. The merit of the proposed approach is supported by simulation studies and a real-world macroeconomic data analysis.
翻译:作为特殊无限矢量自动递减模式,矢量自动递减平均(VARMA)模型可以捕捉比广泛使用的有限级VAR模型更丰富的时间模式。然而,其实用性长期以来一直受到其不可识别性、可计算性以及相对解释困难的阻碍。本文引入了一个新的无限级VAR模型,该模型仅略微牺牲了一般性,继承了VARMA模型的基本时间模式,但避免了上述所有缺点。作为另一个有吸引力的特点,该模型的时间和跨部门依赖结构可以分别解释,因为它们具有不同参数的特征。对于高维时间序列来说,这种分离促使我们对决定交叉依赖性的参数施加了偏狭性。因此,可以实现更高的统计效率和可解释性VAR模型模型模型的暂时性模式,但避免了上述所有缺点。我们为拟议模型引入一个$\ell_1美元固定的估测器,并得出相应的非抽取性模型,因为它们具有不同参数的特征。对于高维度时间序列来说,这种分离促使我们对确定跨部依赖性参数的参数施加了偏差。一个支持的宏观经济测算法。一个支持的宏观经济测算法。一个支持了一个有效的模型,一个支持了宏观经济选择法。