This paper is concerned with developing an efficient numerical algorithm for fast implementation of the sparse grid method for computing the $d$-dimensional integral of a given function. The new algorithm, called the MDI-SG ({\em multilevel dimension iteration sparse grid}) method, implements the sparse grid method based on a dimension iteration/reduction procedure, it does not need to store the integration points, neither does it compute the function values independently at each integration point, instead, it re-uses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order $O(Nd^3 )$ or better, compared to the exponential order $O(N(\log N)^{d-1})$ for the standard sparse grid method, where $N$ denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration.
翻译:本文涉及为快速实施用于计算某一函数的美元元元元元组成部分的稀少网格方法开发一个高效的数字算法。新的算法称为MDI-SG(多维迭代稀网格 ) 方法,根据一个维度迭代/递减程序实施稀少的网格方法,它不需要存储集成点,它也不需要在每一个集成点独立计算函数值,相反,它重新使用功能评价的计算,尽可能多地在所有集集集集的集成点进行功能评价,并沿协调方向进行迭接。从数字上表明,拟议的MDI-SG方法的计算复杂性(按CPU时间计算)是多元顺序的$O(Nd%3),或更好,而标准稀散网法的指数顺序是$O(N(log N) ⁇ d-1},其中美元表示每个协调方向的最大集成点的数量。因此,拟议的MDI-SG方法有效地绕过了高密度网格集方法对维度的诅咒。