A biomechanical model often requires parameter estimation and selection in a known but complicated nonlinear function. Motivated by observing that data from a head-neck position tracking system, one of biomechanical models, show multiplicative time dependent errors, we develop a modified penalized weighted least squares estimator. The proposed method can be also applied to a model with non-zero mean time dependent additive errors. Asymptotic properties of the proposed estimator are investigated under mild conditions on a weight matrix and the error process. A simulation study demonstrates that the proposed estimation works well in both parameter estimation and selection with time dependent error. The analysis and comparison with an existing method for head-neck position tracking data show better performance of the proposed method in terms of the variance accounted for (VAF).
翻译:生物机能模型往往要求在已知但复杂的非线性功能中进行参数估计和选择。生物机能模型之一,通过观察头部颈部位置跟踪系统(生物机能模型之一)的数据,显示多重时间依赖误差,我们开发了一个经过修改的受罚加权最小正方形估测器。拟议方法也可以适用于非零平均时间依赖添加误差的模型。在重量矩阵和误差过程的温和条件下,对拟议测算器的亚性特性进行了调查。模拟研究表明,拟议的估计在参数估计和有时间依赖误差的选择两方面都效果良好。与头部颈部位置跟踪数据现有方法的分析与比较表明,按所计算的差异计算,拟议方法的性能较好(VAF)。