We develop a theoretical framework for the analysis of oblique decision trees, where the splits at each decision node occur at linear combinations of the covariates (as opposed to conventional tree constructions that force axis-aligned splits involving only a single covariate). While this methodology has garnered significant attention from the computer science and optimization communities since the mid-80s, the advantages they offer over their axis-aligned counterparts remain only empirically justified, and explanations for their success are largely based on heuristics. Filling this long-standing gap between theory and practice, we show that oblique regression trees (constructed by recursively minimizing squared error) satisfy a type of oracle inequality and can adapt to a rich library of regression models consisting of linear combinations of ridge functions and their limit points. This provides a quantitative baseline to compare and contrast decision trees with other less interpretable methods, such as projection pursuit regression and neural networks, which target similar model forms. Contrary to popular belief, one need not always trade-off interpretability with accuracy. Specifically, we show that, under suitable conditions, oblique decision trees achieve similar predictive accuracy as neural networks for the same library of regression models. To address the combinatorial complexity of finding the optimal splitting hyperplane at each decision node, our proposed theoretical framework can accommodate many existing computational tools in the literature. Our results rely on (arguably surprising) connections between recursive adaptive partitioning and sequential greedy approximation algorithms for convex optimization problems (e.g., orthogonal greedy algorithms), which may be of independent theoretical interest.


翻译:我们为分析斜度决定树制定了一个理论框架,其中每个决定节点的分裂发生在共差线性组合中(而不是传统树状结构,后者迫使轴对齐的分裂只涉及单一共差 ) 。 虽然自80年代中期以来,这种方法从计算机科学和优化社区中引起了大量关注,但它们对轴对齐的对应方提供的优势仍然只是经验上的理由,解释其成功与否在很大程度上基于超常性。填补理论和实践之间长期存在的差距,我们表明,斜度回归树(通过递现将正对流的正正正差错误最小化)满足了一种极差不平等,并能够适应由脊峰功能及其限制点的线性组合组成的回归模型的丰富图书馆。这提供了定量基线,用以比较和对比决策树与其他不易解释的方法(如预测跟踪回归和神经网络,这些方法以类似模式形式为对象。与公众信念相反,人们不一定需要以独立的解释方式进行交易。 具体地说,我们表明,在合适的模型下,对正值的上,正轨对正轨的正轨的正轨上,我们决定性结构结构结构结构结构的每部的精确度网络可以找到我们目前最接近的正轨的正轨。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年12月13日
Arxiv
0+阅读 · 2022年12月13日
Arxiv
0+阅读 · 2022年12月9日
Arxiv
0+阅读 · 2022年12月8日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员