In our previous paper, we proposed a non-Gaussian Bayesian filter using power moments of the system state. A density surrogate parameterized as an analytic function is proposed to approximate the true system state, of which the distribution is only assumed Lebesgue integrable. To our knowledge, it is the first Bayesian filter where there is no prior constraints on the true density of the state and the state estimate has a continuous form of function. In this very preliminary version of paper, we propose a new type of statistics, which is called the generalized logarithmic moments. They are used to parameterize the state distribution together with the power moments. The map from the parameters of the proposed density surrogate to the power moments is proved to be a diffeomorphism, which allows to use gradient methods to treat the optimization problem determining the parameters. The simulation results reveal the advantage of using both moments for estimating mixtures of complicated types of functions.
翻译:在我们的上一篇论文中,我们提出了一个使用系统状态的功率时刻的非Gausian Bayesian过滤器。 提出了一个密度替代参数,作为分析函数, 以近似真实的系统状态, 其分布仅假定为 Lebesgue 不可磨灭。 据我们所知, 这是第一个巴耶斯过滤器, 对州的真实密度没有事先限制, 国家估计具有一种连续的功能形式 。 在这份非常初步的论文中, 我们提出了一个新类型的统计, 叫做通用对数时刻 。 它们用来将州分布与功率时刻一起进行参数化 。 从拟议密度替代值参数到动力时刻的地图被证明是一种二面形主义, 它允许使用梯度方法处理确定参数的最优化问题。 模拟结果揭示了使用两种时间来估计复杂功能类型的混合物的优势 。