Dynamical models described by ordinary differential equations (ODEs) are a fundamental tool in the sciences and engineering. Exact reduction aims at producing a lower-dimensional model in which each macro-variable can be directly related to the original variables, and it is thus a natural step towards the model's formal analysis and mechanistic understanding. We present an algorithm which, given a polynomial ODE model, computes a longest possible chain of exact linear reductions of the model such that each reduction refines the previous one, thus giving a user control of the level of detail preserved by the reduction. This significantly generalizes over the existing approaches which compute only the reduction of the lowest dimension subject to an approach-specific constraint. The algorithm reduces finding exact linear reductions to a question about representations of finite-dimensional algebras. We provide an implementation of the algorithm, demonstrate its performance on a set of benchmarks, and illustrate the applicability via case studies. Our implementation is freely available at https://github.com/x3042/ExactODEReduction.jl
翻译:以普通差异方程式(ODEs)描述的动态模型是科学和工程方面的一个基本工具。精确的减少旨在产生一个低维模型,其中每个宏观变量都可直接与原始变量直接相关,因此,这是向模型正式分析和机械理解迈出的自然步骤。我们提出了一个算法,根据一个多维数方程式模型,计算出该模型的尽可能长的精确线性削减链,这样每个减法都精细细地改进了前一个减法,从而使用户能够控制降法所保持的详细程度。这大大概括了仅计算受特定方法制约的最低维度的减法的现有方法。算法减少了找到精确的线性降法,从而解决了关于定界数代数的表述问题。我们提供了算法的实施,展示了一套基准的性能,并通过案例研究说明其适用性。我们的实施可以在 https://github.com/x3042/ExactODERement.jl上自由查阅。